首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1000篇
  免费   39篇
  国内免费   2篇
化学   635篇
晶体学   6篇
力学   35篇
数学   80篇
物理学   285篇
  2023年   11篇
  2022年   24篇
  2021年   19篇
  2020年   22篇
  2019年   34篇
  2018年   23篇
  2017年   27篇
  2016年   46篇
  2015年   32篇
  2014年   43篇
  2013年   76篇
  2012年   86篇
  2011年   88篇
  2010年   41篇
  2009年   48篇
  2008年   45篇
  2007年   53篇
  2006年   32篇
  2005年   49篇
  2004年   41篇
  2003年   28篇
  2002年   25篇
  2001年   14篇
  2000年   13篇
  1999年   11篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1961年   2篇
排序方式: 共有1041条查询结果,搜索用时 31 毫秒
971.
Reported herein is an ortho‐oxygenative 1,2‐difunctionalization of diarylalkynes under merged gold/organophotoredox catalysis to access highly functionalized 2‐(2‐hydroxyaryl)‐2‐alkoxy‐1‐arylethan‐1‐ones. Detailed mechanistic studies suggested a relay process, initiating with gold‐catalyzed hydroalkoxylation of alkynes, to generate enol‐ether followed by a key formal [4+2]‐cycloaddition reaction. The successful application of the present methodology was also shown for the synthesis of benzofurans.  相似文献   
972.
The preparation of multinuclear metal complexes offers a route to novel anticancer agents and delivery systems. The potency of a novel triangular multinuclear complex containing three platinum atoms, Pt‐3 , towards breast cancer stem cells (CSCs) is reported. The trinuclear platinum(II) complex, Pt‐3 exhibits selective toxicity towards breast CSCs over bulk breast cancer cells and non‐tumorigenic breast cells. Remarkably, Pt‐3 inhibits the formation, size, and viability of mammospheres to a better extent than salinomycin, an established CSC‐potent agent, and cisplatin and carboplatin, clinically used platinum drugs. Mechanism of action studies show that Pt‐3 effectively enters breast CSCs, penetrates the nucleus, induces genomic DNA damage, and prompts caspase‐dependent apoptosis. To the best of our knowledge, Pt‐3 is the first multinuclear platinum complex to selectively kill breast CSCs over other breast cell types.  相似文献   
973.
The rheological behavior such as yielding of fat crystal networks are dictated by many variables. Among these variables, the shape of the constituent fat cluster is important yet relatively unexplored. In this work, we describe the rheological investigations of a fat-oil system which can be formulated to either contain bundles of needles or spherical clusters by controlling the cooling rate and fat concentration. Fat-oil mixtures containing high-fat concentrations exhibited weak frequency dependence of storage modulus (G ) and loss modulus (G ). The yielding behavior of the mixtures were investigated by large amplitude oscillatory shear (LAOS) rheology using strain and stress controlled modes. Lissajous-Bowditch plots and orthogonal set of Chebyshev polynomials were used to analyze the non-linearities associated with the yielded fat-oil mixtures. For a given fat concentration, the yield stress of fat networks obtained at low cooling rates (bundles of needles) were similar to that of networks obtained at high cooling rates (spherical clusters). However, after yielding, Lissajous-Bowditch plots suggested that the mixtures comprising of bundles of needles exhibited viscous-like behavior while the spherical clusters exhibited a plastic-like behavior. This was further supported by microscopy images of yielded fat-oil mixtures. Overall, for a given fat concentration, the two different shapes of fat clusters can give rise to networks of similar yield stress values but different behaviors after yielding.  相似文献   
974.
Langoju R  Patil A  Rastogi P 《Optics letters》2005,30(24):3326-3328
A phase shifting method based on high-resolution frequency estimation and Fourier transform technique is introduced. This method, also referred to as the eigenvector method, draws on the complementary strengths of both these methods. The salient feature of the method lies in its ability to handle nonsinusoidal wave-forms, multiple piezoelectric transducers, and arbitrary phase steps in an optical configuration. The method does not need the addition of carrier fringes to separate the spectral contents in the intensity fringes. The proposed concept thus overcomes the limitations of methods based on Fourier transform techniques. The robustness of the proposed method is studied in the presence of noise.  相似文献   
975.
976.
The ultrasonic wave propagation in sinusoidally corrugated waveguides is studied in this paper. Periodically corrugated waveguides are gaining popularity in the field of vibration control and for designing structures with desired acoustic band gaps. Currently only numerical method (Boundary Element Method or Finite Element Method) based packages (e.g., PZFlex) are in principle capable of modeling ultrasonic fields in complex structures with rapid change of curvatures at the interfaces and boundaries but no analyses have been reported. However, the packages are very CPU intensive; it requires a huge amount of computation memory and time for its execution. In this paper a new semi-analytical technique called Distributed Point Source Method (DPSM) is used to model the ultrasonic field in sinusoidally corrugated waveguides immersed in water where the interface curvature changes rapidly. DPSM results are compared with analytical solutions. It is found that when a narrow ultrasonic beam hits the corrugation peaks at an angle, the wave propagates in the backward direction in waveguides with high corrugation depth. However, in waveguides with small corrugation the wave propagates in the forward direction. The forward and backward propagation phenomenon is found to be independent of the signal frequency and depends on the degree of corrugation.  相似文献   
977.
Despite uncertainty about the potential human health and environmental risks of nanotechnology, major stakeholders such as regulatory agencies and the nanotechnology industry are already negotiating the emerging regulatory framework for nanotechnology. Because of a relative lack of nano-specific regulations, the future of nanotechnology development will depend greatly on the views held by the nanotechnology industry. This study fills the research gap in understanding how the nanotechnology industry perceives the risks of nanotechnology. This is the first interview-based study of the nanotechnology industry in the United States. Semi-structured, open-ended phone interviews were conducted with 17 individuals involved in the commercialization of nanotechnology in the United States. Results indicate that while the industry acknowledges uncertainty about the potential risks of nanotechnology and takes significant precaution in ensuring the safety of their products, they do not see nanotechnology as novel or risky. They do not believe that uncertainty over risk ought to delay the further development of nanotechnology. The industry sees itself as the primary agent in ensuring consumer safety and believes that consumers are adequately protected. They are also largely benefit-centric and view product labeling as inefficacious.  相似文献   
978.
Helicobacter pylori causes several gastrointestinal diseases and may also contribute to the development of type 2 diabetes (T2D). Several studies suggest that there might be a potential link between H. pylori infection and T2D, but it still remains the subject of debate. Here, we first report the cumulative effect of H. pylori infection and T2D by exploiting the excretion kinetics of 13C/12C and 18O/16O isotope ratios of exhaled breath CO2 in response to an oral dose of 13C-enriched glucose in individuals with T2D and non-diabetic controls (NDC) harbouring the H. pylori infection. Using a high-resolution integrated cavity output spectroscopy (ICOS) technique in the infrared region, we observed that the isotopic fractionations of 13C and 18O in breath CO2 are distinctly altered in H. pylori infected T2D patients as well as in H. pylori infected NDC. Several optimal diagnostic cut-off points of 13C and 18O isotopes of breath CO2 were also determined which exhibited the diagnostic sensitivity and specificity of ~97?% and thus suggesting that breath 13C and 18O isotopes might be considered as potential biomarkers for the non-invasive assessment of the gastric pathogen prior to the onset of T2D. This may open a new diagnostic strategy for treating these common diseases in an alternative way.  相似文献   
979.
Selective quenching of luminescence of quantum dots (QDs) by Cu2+ ions vis-à-vis other physiologically relevant cations has been reexamined. In view of the contradiction regarding the mechanism, we have attempted to show why Cu2+ ions quench QD-luminescence by taking CdS and CdTe QDs with varying surface groups. A detailed study of the solvent effect and also size dependence on the observed luminescence has been carried out. For a 13% decrease in particle diameter (4.3 nm →3.7 nm), the quenching constant increased by a factor of 20. It is established that instead of surface ligands of QDs, conduction band potential of the core facilitates the photo-induced reduction of Cu (II) to Cu (I) thereby quenching the photoluminescence. Taking the advantage of biocompatibility of dendrimer and its high affinity towards Cu2+ ions, we have followed interaction of Cu2+-PAMAM and also dendrimer with the CdTe QDs. Nanomolar concentration of PAMAM dendrimer was found to quench the luminescence of CdTe QDs. In contrast, Cu2+-PAMAM enhanced the fluorescence of CdTe QDs and the effect has been attributed to the binding of Cu2+-PAMAM complex to the CdTe particle surface. The linear portion of the enhancement plot due to Cu2+-PAMAM can be used for determination of Cu2+ ions with detection limit of 70 nM.  相似文献   
980.
Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar interfaces generated by finite size transducers. A general formulation good for both isotropic and anisotropic solids is presented in this article. A variety of conditions have been incorporated in the formulation including irregularities at the interfaces. The method presented here requires frequency domain displacement and stress Green's functions. Due to the presence of different materials in the problem geometry various elastodynamic Green's functions for different materials are used in the formulation. Expressions of displacement and stress Green's functions for isotropic and anisotropic solids as well as for the fluid media are presented. Computed results are verified by checking the stress and displacement continuity conditions across the interface of two different solids of a bimetal plate and investigating if the results for a corrugated plate with very small corrugation match with the flat plate results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号