首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1325篇
  免费   60篇
  国内免费   4篇
化学   986篇
晶体学   12篇
力学   42篇
数学   57篇
物理学   292篇
  2023年   11篇
  2022年   40篇
  2021年   28篇
  2020年   39篇
  2019年   44篇
  2018年   46篇
  2017年   63篇
  2016年   53篇
  2015年   46篇
  2014年   51篇
  2013年   127篇
  2012年   99篇
  2011年   107篇
  2010年   43篇
  2009年   56篇
  2008年   44篇
  2007年   55篇
  2006年   52篇
  2005年   34篇
  2004年   33篇
  2003年   17篇
  2002年   23篇
  2001年   7篇
  2000年   13篇
  1999年   9篇
  1998年   5篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   13篇
  1992年   12篇
  1991年   14篇
  1990年   10篇
  1989年   10篇
  1988年   8篇
  1987年   11篇
  1986年   7篇
  1985年   15篇
  1984年   11篇
  1983年   12篇
  1982年   6篇
  1981年   12篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   8篇
  1976年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1389条查询结果,搜索用时 15 毫秒
101.
Quaternary kesterite‐type Cu2ZnSnS4 (CZTS) nanoparticles (NPs) were successfully synthesized by a single‐step solvothermal process. Semiconductor CZTS nanoparticles were obtained from ethylene glycol (EG) and CZTS precursor after solvothermal process at 180 °C for 30 h in polyvinylpyrrolidone (PVP) medium. The synthesized CZTS NPs were further annealed at 450 °C in nitrogen atmosphere and used for further characterizations. The CZTS NPs were characterized using X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), micro Raman spectroscopy, high resolution transmission electron microscopy (HRTEM) and X‐ray photoelectron spectroscopy (XPS). The optical properties of the CZTS NPs were recorded by UV–vis absorption spectroscopy. The results showed that the synthesized CZTS nanoparticles are kesterite‐type CZTS, with good crystallinity and a stoichiometric composition. Moreover, the prepared nanoparticles have a size ranging from 5–7 nm and a band gap of ~1.5 eV.

  相似文献   

102.
A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed. This method enables convergent construction of complex epoxy-bridged polycyclic ring systems with five contiguous stereocenters with excellent exo-selectivity and broad substrate scope. The highly atom-economical process involves 6-endo-dig cyclization of carbonyl oxygen onto an activated alkyne resulting in a highly reactive metal–benzopyrylium intermediate, which readily undergoes intramolecular [3 + 2] annulation/hydration. Asymmetric induction is also achieved for the first time in Rh(i)-catalyzed 1,3-dipolar cycloaddition using an easily accessible chiral diene as the ligand.

A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed.  相似文献   
103.
Journal of Solid State Electrochemistry - In this study, the lanthanum sulfide-manganese sulfide (La2S3-MnS) nanosheet composite films with different thicknesses were grown on graphene oxide (GO)...  相似文献   
104.
The incorporation of cyclodextrins (CDs) to nonviral cationic polymer vectors is very attractive due to recent studies that report a clear improvement of their cytocompatibility and transfection efficiency. However, a systematic study on the influence of the CD derivatization is still lacking. In this work, the relevance of β‐CD permethylation has been addressed by preparing and evaluating two series of copolymers of the cationic N‐ethyl pyrrolidine methacrylamide (EPA) and styrenic units bearing pendant hydroxylated and permethylated β‐CDs (HCDSt and MeCDSt, respectively). For both cell lines, CDs permethylation shows a strong influence on plasmid DNA complexation, “in vitro” cytocompatibility and transfection efficiency of the resulting copolymers over two murine cell lines. While the incorporation of the hydroxylated CD moiety increased the cytotoxicity of the copolymers in comparison with their homopolycationic counterpart, the permethylated copolymers have shown full cytocompatibility as well as superior transfection efficiency than the controls. This behavior has been related to the different chemical nature of both units and tentatively to a different distribution of units along the polymeric chains. Cellular internalization analysis with fluorescent copo­lymers supports this behavior.

  相似文献   

105.
Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.  相似文献   
106.
In the present work, porous 3D CdO‐microstructured electrode obtained by pyrolysis of 3D CdCO3 microstructures is self‐sensitized with CdSe using an ion exchange reaction. After sensitization, an interfacial treatment of the CdO–CdSe interface is performed by depositing a thin film of PEDOT using a photoinduce polymerization route. The microstructured electrode before and after interfacial treatment is characterized using field‐emission scanning microscope, energy dispersive X‐ray analyzer, contact angle measurement, UV–Visible absorption spectrophotometer and X‐ray photoelectron spectrometer. After constructing a liquid junction solar cell with a Pt counter electrode, the photovoltaic performance and interfacial charge transfer kinetics across the CdO–CdSe interface before and after PEDOT treatment are investigated. The results exhibit an improved interfacial charge‐transfer resistance after the PEDOT treatment, which leads to enhance the short‐circuit current by 15.81% and the power conversion efficiency by 19.82%.  相似文献   
107.
Several p H-dependent processes and reactions take place in the human body;hence,the p H of body fluids is the best indicator of disturbed health conditions.However,accurate and real-time diagnosis of the p H of body fluids is complicated because of limited commercially available p H sensors.Hence,we aimed to prepare a flexible,transparent,disposable,userfriendly,and economic strip-based solid-state p H sensor using palladium nanoparticles(Pd NPs)/N-doped carbon(NC)composite material.The Pd NPs/NC composite material was synthesized using wool keratin(WK)as a precursor.The insitu prepared Pd NPs played a key role in the controlled switching of protein structure to the N-doped carbon skeleton withπ–πarrangement at the mesoscale level,which mimics the A–B type polymeric structure,and hence,is highly susceptible to H+ions.The optimized carbonization condition in the presence of Pd NPs showed that the material obtained using a modified Ag/Ag Cl reference electrode had the highest p H sensitivity with excellent stability and durability.The optimized p H sensor showed high specificity and selectivity with a sensitivity of 55 m V/p H unit and a relative standard deviation of 0.79%.This study is the first to synthesize Pd NPs using WK as a stabilizing and reducing agent.The applicability of the sensor was investigated for biological samples,namely,saliva and gastric juices.The proposed protocol and material have implications in solid-state chemistry,where biological material will be the best choice for the synthesis of materials with anticipated performance.  相似文献   
108.
109.
The successful realization of gold-catalyzed chain-walking reactions, facilitated by ligand-enabled Au(I)/Au(III) redox catalysis, has been reported for the first time. This breakthrough has led to the development of gold-catalyzed annulation reaction of alkenes with iodoarenes by leveraging the interplay of chain-walking and π-activation reactivity mode. The reaction mechanism has been elucidated through comprehensive experimental and computational studies.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号