首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1708篇
  免费   79篇
  国内免费   9篇
化学   1293篇
晶体学   35篇
力学   46篇
数学   106篇
物理学   316篇
  2024年   16篇
  2023年   17篇
  2022年   103篇
  2021年   88篇
  2020年   55篇
  2019年   60篇
  2018年   82篇
  2017年   60篇
  2016年   89篇
  2015年   61篇
  2014年   60篇
  2013年   138篇
  2012年   133篇
  2011年   122篇
  2010年   73篇
  2009年   68篇
  2008年   84篇
  2007年   70篇
  2006年   44篇
  2005年   37篇
  2004年   30篇
  2003年   33篇
  2002年   51篇
  2001年   36篇
  2000年   39篇
  1999年   12篇
  1998年   18篇
  1997年   9篇
  1996年   5篇
  1995年   8篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   10篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1974年   2篇
  1937年   2篇
排序方式: 共有1796条查询结果,搜索用时 15 毫秒
61.
62.
In the title compound, [Fe(C5H5)(C16H12N3OS)], the 8‐am­inoquinoline and acyl­thio­urea moieties are almost planar. There are two perpendicular arrangements of the mol­ecules in the crystal with slightly different conformations. The two cyclo­penta­dienyl rings in each mol­ecule are parallel and eclipsed.  相似文献   
63.
In the title compound, [Fe(C17H14P)2]2[Sb4Cl16]·C2H6O, the Fe atoms lie on inversion centres and the pairs of cyclopentadienyl rings are consequently in a fully staggered conformation. The centrosymmetric anionic clusters formed by [Sb4Cl16]4? are surrounded by the cations and are held together by weak C—H?Cl interactions. These formations stack along the a axis to form columns, and the columns are interconnected by another weak C—H?Cl interaction along the b axis.  相似文献   
64.
Currently, the authentication analysis of edible fats and oils is an emerging issue not only by producers but also by food industries, regulators, and consumers. The adulteration of high quality and expensive edible fats and oils as well as food products containing fats and oils with lower ones are typically motivated by economic reasons. Some analytical methods have been used for authentication analysis of food products, but some of them are complex in sampling preparation and involving sophisticated instruments. Therefore, simple and reliable methods are proposed and developed for these authentication purposes. This review highlighted the comprehensive reports on the application of infrared spectroscopy combined with chemometrics for authentication of fats and oils. New findings of this review included (1) FTIR spectroscopy combined with chemometrics, which has been used to authenticate fats and oils; (2) due to as fingerprint analytical tools, FTIR spectra have emerged as the most reported analytical techniques applied for authentication analysis of fats and oils; (3) the use of chemometrics as analytical data treatment is a must to extract the information from FTIR spectra to be understandable data. Next, the combination of FTIR spectroscopy with chemometrics must be proposed, developed, and standardized for authentication and assuring the quality of fats and oils.  相似文献   
65.
A new route has been devised, leading to the production of VOX3 molecules where X=F, Br and I by an on-line process using vanadium oxytrichloride, VOCl3 as a starting compound passed over the following heated salts NaF, KBr and KI at 375, 700 and 550°C, respectively. The products have been characterized by the IR spectra of their vapors. The low resolution gas phase on-line Fourier transform infrared spectra reported for the first time show strong bands with PQR type structure, centered at 1058, 1035, 1030 and 1025 cm−1 assigned to the ν1(a1), the O=V stretching fundamental mode of VOF3, VOCl3, VOBr3 and VOI3, respectively.  相似文献   
66.
This paper reports the results of a variety of experiments carried out for understanding the solvation behavior of potassium thiocyanate in methanol–water mixtures. Electrical conductivity, speed of sound, viscosity, and FT-Raman spectra of potassium thiocyanate solutions in 5 and 10% methanol–water (w/w) mixtures were measured as functions of concentration and temperature. The conductivity and structural relaxation time suggest the ion–solvent and solvent-separated ion–ion associations increase as the salt concentration increases in the mixtures. The Raman band shifts due to the C–O stretching mode of methanol for the solvent mixtures reveal the formation of methanol–water complexes. The significant changes in the Raman bands for the C–N, C–S and O–H stretching modes indicate the presence of SCN−solvent interactions through the N-end, “free” SCN and the solvent-shared ion pairs as potassium thiocyanate is added to the methanol–water mixtures. The relative changes corresponding to H–O–H bending and C–O stretching frequencies indicate that K+ is preferentially solvated by water in these solvent mixtures. The appearance and increase of the intensity of a broad band at ≈940 cm−1 upon salt addition was attributed to the SCN–H2O–K+ solvent-shared ion pairs. No Raman spectral evidence for K+(H2O)n species was observed. The preferential solvation of K+ and SCN in the methanol−water mixtures was verified by the application of the Kirkwood−Buff theory of solutions. This theory confirms that K+ is strongly preferentially solvated by water, whereas SCN is preferentially solvated by the methanol component.  相似文献   
67.
1-(Ferrocenyl)ethanol has been immobilized within polypyrrole films during their electrochemical deposition, or following their deposition, via its adduct with boron trifluoride. Dissociation of H+ from this adduct, formed in a solution of boron trifluoride diethyl ether (BFEE) in acetonitrile, produces an anion that can act as a counterion for oxidized polypyrrole. Its subsequent hydrolysis produces a polypyrrole film containing neutral 1-(ferrocenyl)ethanol which was found to be strongly retained. In addition to producing a novel type of polypyrrole–ferrocene composite, this work provides clear evidence to support the efficacy of this methodology for the incorporation of neutral species within conducting polymer films.  相似文献   
68.
69.
Catharanthus roseus (L.) G. Don plants were grown in different water regimes in order to study the drought induced osmotic stress and proline (PRO) metabolism, antioxidative enzyme activities and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress from 30 days after sowing (DAS) and regular irrigation was kept as control. The plants were uprooted on 41 DAS (10 DID), 46 DAS (15 DID) and 51 DAS (20 DID). The drought stressed plants showed increased aminoacid (AA), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) and increased γ-glutamyl kinase (γ-GK) activities when compared to control. The antioxidative enzymes like peroxidase (POX) and polyphenol oxidase (PPO) increased to a significant level in drought stressed plants when compared to control. The drought stressed C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to well-watered control plants. Our results suggest that the cultivation of medicinal plants like C. roseus in water deficit areas would increase its PRO metabolism, osmoregulation, defense system and the level of active principles.  相似文献   
70.
The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号