首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
化学   41篇
力学   6篇
数学   3篇
物理学   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
排序方式: 共有52条查询结果,搜索用时 281 毫秒
41.
Homovanillic acid (HVA) and vanillylmandelic acid (VMA) were selectively determined by quartz crystal nanobalance sensor in conjunction with net analyte signal (NAS)-based method called HLA/GO. An orthogonal design was applied for the formation of calibration and prediction sets including HVA, VMA, and some common and structurally similar urine compounds. The selection of the optimal time range involved the calculation of the NAS regression plot in any considered time window for each test sample. The searching of a region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of predicted error sum of squares value was carried out by applying a moving window strategy. Based on the obtained results, the differences on the adsorption profiles in the time range between 1 and 300 s were used to determine mixtures of compounds by HLA/GO method. Several figures of merit like selectivity, sensitivity, analytical sensitivity, and limit of detection were calculated for both compounds. The results showed that the method was successfully applied for the determination of VMA and HVA.  相似文献   
42.
The present work describes the possibility of using pervaporation process to recover the pomegranate aroma compounds from an actual pomegranate juice and a model aroma solution. Four different chemicals representing four major kinds of aroma compounds, namely, 3-methyl butanal, isopentyl acetate, n-hexanol and α-ionone, were utilized in this work. Three POMS membranes and two PDMS membranes were tested for pervaporation and compared for their separation performance. The influence of various operating parameters such as feed flow rate, feed temperature and permeate pressure on the permeation flux and aroma compounds enrichment factor was investigated. Feed flow rate was shown to have no significant effect on both total flux and aroma enrichment factor, whereas feed temperature and permeate pressure had highly significant effects. An increase in feed temperature led to higher flux and enrichment factor. As permeate pressure increased, the flux and enrichment factor of some aroma compounds decreased. Some of the aroma compounds showed higher enrichment factor at higher permeate pressures. Finally, the activation energy of permeation and the membrane permeability for each aroma compound were determined.  相似文献   
43.
Transport in Porous Media - The mass exchange between the surface of a model capillary porous medium and the adjacent gas-side boundary layer is studied in the limiting condition of isothermal,...  相似文献   
44.
In this work, a porous and flexible three‐dimensional (3D) nickel/gold nanoparticle electrode (NiF/AuNPs) is presented as an efficient electrocatalyst for ethanol oxidation in alkaline media. The 3D nanocomposite electrode consists of interconnected porous nickel foam (NiF) with large pores (500±200 μm diameter) surrounded by interconnected struts (~100 μm) that are decorated with gold nanoparticles (AuNPs, 37±8 nm) through in‐situ electrochemical deposition. The catalytic performance of the 3D electrode was evaluated by different electrochemical methods. An enhancement in the performance (about 253 %) and a remarkable decline in onset potential (about ~0.63 V) in comparison with pristine NiF for ethanol oxidation are demonstrated. This potential is lower than many reported results except palladium‐ and platinum‐based catalysts, which are expensive. It is shown that both hydroxyl anions and cations affect the ethanol oxidation on the 3D electrode. The interconnected porous structure provides efficient mass diffusivity, which along with its high specific surface area combined with the catalytic nature of AuNPs, may open new opportunities for in‐inexpensive and highly efficient electro‐oxidation of ethanol for energy applications.  相似文献   
45.
A novel heterogeneous one‐pot protocol is developed for tandem aerobic synthesis of benzimidazoles through dehydrogenative coupling of primary benzylic alcohols and aromatic diamines co‐catalysed by Keplerate‐type {Mo72V30} polyoxometalate and N‐hydroxyphthalimide (NHPI). The catalytic system also works well for the synthesis of benzimidazoles using benzaldehydes, as commonly used starting materials, in the absence of NHPI. The high activity of the solid nanocluster provides standard conditions avoiding current limitations of oxidation methods including high catalyst loadings. The spectral results and leaching experiments revealed that the nanocapsule preserved its structural integrity after being reused in consecutive runs.  相似文献   
46.
We report the preparation of supported palladium(II) acetylacetonate, Pd(acac)2, coordinated by pendant acac groups, by reacting palladium acetate with acac‐functionalized doubly silica‐coated magnetic nanoparticles. The solid support consists of an amorphous silica‐coated (as magnetite protecting layer) magnetite core and a mesoporous silica shell. The magnetically separable palladium nanocatalyst is active for Suzuki cross‐coupling reaction of acyl halides with boronic acids. The catalyst is simply isolated from the reaction mixture that allows fast and efficient isolation of product and catalyst compared to traditional methods that generally make use of time‐ and solvent‐consuming procedures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
47.
The preparation of palladium nanoparticles supported on acetylacetone‐modified silica gel and their catalytic application for Heck olefination of aryl halides were investigated. The catalyst was characterized using X‐ray diffraction, X‐ray photoelectron spectroscopy, and transmission and scanning electron microscopies. The supported palladium nanoparticles are demonstrated to be a highly active and reusable catalyst for the Heck reaction. Several reaction parameters, including type and amount of solvent and base, were evaluated. The heterogeneity of the catalytic system was investigated with results indicating that there is a slight palladium leaching into the reaction solution under the applied reaction conditions. Despite this metal leaching, the catalyst can be reused nine times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
48.
49.
In this paper, heat transfer characteristics of a miniature heat sink cooled by SiO2–water nanofluids were investigated both experimentally and numerically. The heat sink was fabricated from aluminum and insulated by plexiglass cover plates. The heat sink consisted of an array of 4 mm diameter circular channels with a length of 40 mm. Tests were performed while inserting a 180 W/cm2 heat flux to the bottom of heat sink and Reynolds numbers ranged from 400 to 2000. The three-dimensional heat transfer characteristics of the heat sink were analyzed numerically by solving conjugate heat transfer problem of thermally and hydrodynamically developing fluid flow. Experimental results showed that dispersing SiO2 nanoparticles in water significantly increased the overall heat transfer coefficient while thermal resistance of heat sink was decreased up to 10%. Numerical results revealed that channel diameter, as well as heat sink height and number of channels in a heat sink have significant effects on the maximum temperature of heat sink. Finally, an artificial neural network (ANN) was used to simulate the heat sink performance based on these parameters. It was found that the results of ANN are in excellent agreement with the mathematical simulation and cover a wider range for evaluation of heat sink performance.  相似文献   
50.
Alginate beads, often used for controlled release of enzymes and drugs, are usually produced by spraying sodium alginate liquid into a gelling agent using mechanical vibration nozzle or air jet. In this work an alternative method of electro-spray was employed to form droplets with desired size from a highly viscous sodium alginate solution using constant DC voltage. The droplets were then cured in a calcium chloride solution. The main objective was to produce mono-sized beads from such a highly viscous and non-Newtonian liquid (1000-5000 mPa s). The effects of nozzle diameter, flow rate and concentration of liquid on the size of the beads were investigated. Among the parameters studied, voltage had a pronounced effect on the size of beads as compared to flow rate zzle diameter and concentration of alginate liquid. The size of beads was reduced to a minimum value with increasing the voltage in the range of 0-10 kV. At the early stages of voltage increase (I.e. Up to about 4 kV), the rate of size reduction was relatively low, while the dripping mode dominated. However, in the middle part of the range of applied voltage, where the rate of size reduction was high (I.e. About 4-7 kV), an unstable transition occurred between dripping and jetting. At the end part of the range (I.e. 7-10 kV) jet mode of spray was observed. Increasing the height of fall of the droplets was found to improve the sphericity of the beads, because of the increased time of flight for the droplets. This was especially identifiable at higher concentrations of the alginate liquid (I.e. 3 w/v%)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号