首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   2篇
化学   33篇
晶体学   1篇
数学   1篇
物理学   63篇
  2022年   2篇
  2021年   4篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   13篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
排序方式: 共有98条查询结果,搜索用时 0 毫秒
51.
Recently photon-added states that could be detected through the emission rather than the absorption of electromagnetic radiation have been actively explored and investigated. In this paper, we construct the photon-added power-law-potential coherent states (PA-PLPCSs) using generalized Heisenberg algebra. The Klauder minimal set of conditions required to obtain coherent states are satisfied. We study nonclassical effects associated with PA-PLCSs using the Mandel parameter and discuss some of their intriguing nonclassical behavior. These states have interesting significance and can be realized experimentally, exhibiting highly nonclassical behavior that depends on the degree of excitation and other parameters. Finally, we study the dynamics of entanglement and quantum discord for two-mode state within the framework of PLPCSs and show that the sudden death and sudden birth of correlations are due to the change and transfer of the correlation between one mode and its environment, using the monogamic relation between the entanglement and quantum discord.  相似文献   
52.
In this paper, we consider the interaction between the two-level atom and the electromagnetic field modes initially prepared in coherent states associated with the generalized Heisenberg algebra (GHA). We investigate the dynamical behavior of the field purity, Pancharatnam phase, and atomic-population inversion. Based on the GHA, we study the statistical properties of the field state through the evolution of the Mandel parameter and examine the effects of the initial atomic state setting and the number of transiting photons. The results show that the GHA-coherent-state strength has the potential to affect the time evolution of the field purification, the Pancharatnam phase, and the Mandel parameter.  相似文献   
53.
In this paper we are interested in studying the entanglement between a single four-level ladder-type atom interacting with one-mode cavity field when the atomic motion is taken into account. The exact solution of the model is obtained by using Schrodinger equation for a specific initial conditions. The field entropy of this system is investigated in the non-resonant case. The effects of the detuning parameter and the atomic motion on the entanglement degree are examined. These investigations show that both of the detuning and the atomic motion play important roles in the evolution of the von Neumann entropy and atomic populations. Finally, conclusions and some features are given.  相似文献   
54.
We present a detail study of the evolution of nonlocal correlations of an interacting quantum system comprising a three-level atom and a field mode initially prepared in a squeezed vacuum state with added photons. We compare the dynamical behavior of the quantum phase and entanglement by varying the number of photons added to the squeezed vacuum state. Furthermore, we examine the influence of the added-photon number and the squeeze parameter on the dynamical behavior of entanglement, quantum phase, and nonclassical properties of the field. Moreover, we explore the link between the quantum phase and the nonlocal correlation. Finally, we introduce an effective method to generate and maintain a high level of entanglement for this quantum system based on precise parameter ranges.  相似文献   
55.
The kinetics of oxidation of [CoIINM(H2O)]3– (N = nitrilotriacetate, M = malonate) by N-bromosuccinimide (NBS) in aqueous solution have been found to obey the equation: d[CoIII]/dt = k 1 K 2[NBS][CoII]T/{1 + K2[NBS] + (H+/K1)} where k 1 is the rate constant for the electron transfer process, K 1 the equilibrium constant for dissociation of [CoIINM(H2O)]3– to [CoIINM(OH)]4– + H+, and K 2 the pre-equilibrium formation constant. Values of k 1 = 1.07 × 10–3 s–1, K 1 = 4.74 × 10–8 mol dm–3 and K 2 = 472 dm3 mol–1 have been obtained at 30 °C and I = 0.2 mol dm–3. The thermodynamic activation parameters have been calculated. The experimental rate law is consistent with a mechanism in which the deprotonated [CoIINM(OH)]4– is considered to be the most reactive species compared to its conjugate acid. It is assumed that electron transfer takes place via an inner-sphere mechanism.  相似文献   
56.
In this paper, we develop a model for four-level double Raman pairs by exploiting the required optimal conditions for this system that are feasible with real experimental realization. We investigate qualitatively the entanglement, statistical properties, and geometric phase for the pair of Stokes and anti-Stokes photons in the presence of the relativistic motion. We show that these quantifiers are very sensitive to the change of the Rabi frequency under relativistic motion, exhibiting substantial phenomena that depend on this kind of the coupling between the atom and photons. Finally, we explore the relationship between the quantum quantifiers for constant and time-dependent coupling.  相似文献   
57.
Summary The kinetics of chromium(III) oxidation by periodate were studied in various EtOH–H2O solvent mixtures covering the 0.0 to 58.0 wt% EtOH range, at five different temperatures in the 15–35°C range. The rate of reaction increases with increasing EtOH content. Thermodynamic activation parameters have been calculated and an appropriate mechanism is suggested.  相似文献   
58.
The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.  相似文献   
59.
    
In this work, we examine a nonlinear version of the Tavis–Cummings model for two two-level atoms interacting with a single-mode field within a cavity in the context of power-law potentials. We consider the effect of the particle position that depends on the velocity and acceleration, and the coupling parameter is supposed to be time-dependent. We examine the effect of velocity and acceleration on the dynamical behavior of some quantumness measures, namely as von Neumann entropy, concurrence and Mandel parameter. We have found that the entanglement of subsystem states and the photon statistics are largely dependent on the choice of the qubit motion and power-law exponent. The obtained results present potential applications for quantum information and optics with optimal conditions.  相似文献   
60.
Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of frequency (50 Hz–100 kHz) and temperature (RT—600 K) indicate that the increase in dielectric constant and loss (ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied.The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号