首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1097篇
  免费   77篇
  国内免费   18篇
化学   902篇
晶体学   9篇
力学   30篇
数学   62篇
物理学   189篇
  2022年   43篇
  2021年   68篇
  2020年   40篇
  2019年   45篇
  2018年   35篇
  2017年   21篇
  2016年   63篇
  2015年   56篇
  2014年   70篇
  2013年   118篇
  2012年   57篇
  2011年   66篇
  2010年   45篇
  2009年   45篇
  2008年   46篇
  2007年   35篇
  2006年   33篇
  2005年   31篇
  2004年   21篇
  2003年   16篇
  2002年   20篇
  2001年   11篇
  2000年   14篇
  1999年   20篇
  1998年   16篇
  1997年   16篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   7篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1981年   11篇
  1980年   2篇
  1978年   7篇
  1976年   2篇
  1975年   4篇
  1969年   2篇
  1962年   3篇
  1960年   2篇
  1959年   9篇
  1958年   2篇
排序方式: 共有1192条查询结果,搜索用时 15 毫秒
41.
42.
A copper metal–organic framework nanoparticles (Cu‐MOF‐NPs) synthesized via simple technique. The prepared Cu‐MOF‐NPs nanoparticles were further characterized using 1H‐NMR, FE‐SEM/EDX and thermal study (DSC/TGA). The FE‐SEM/EDX, thermal analysis, and NMR spectrum data with the other analysis support the nano‐Cu‐MOF structure and the monomeric unit (n[Cu (AIP)2(APY)(H2O)2].4H2O) of Cu‐MOF‐NPs. The photoluminescence (PL) studies of triiodothyronine hormone (T3) based on the prepared Cu‐MOF‐NPs investigated. The results revealed that the Cu‐MOF‐NPs might be used as a biosensor in the determination of triiodothyronine hormone (T3) in biological fluids through a significant quenching of the photoluminescence intensity of Cu‐MOF‐NPs at excitation wavelength 492 nm. The calibration plot achieved over the concentration range 0.0–200.0 ng/dL T3 hormone with a correlation coefficient 0.996 and limit of detection (LOD) and quantification (LOQ) 0.198 and 0.60 ng/dL, respectively. The PL spectra are indicating that Cu‐MOF‐NPs has highly selective sensing properties for T3 hormone without interfering with other human many hormones types. This approach considered a promising analytical tool for early diagnosis of the cases of thyroid disease. The mechanism of quenching between the Cu‐MOF‐NPs, and T3 hormone studied. The mechanism was a dynamic type and obtained due to the energy transfer mechanism.  相似文献   
43.
44.
Coordination compounds of Cu (II), Y (III), Zr (IV) and La (III) with the tetradentate Schiff base (H2L) obtained through the condensation of p‐phenylenediamine with salicylaldehyde under reflux conditions. The complexes were characterized by elemental analysis, magnetic susceptibility, molar conductance and also, with various spectroscopic techniques such as 1H NMR, UV–Vis., IR and XRD techniques. Electrolytic nature of complexes was ascertained by molar conductance values. In these four complexes, the ligand chelates act in a tetradentate manner via azomethine nitrogen and oxygen atoms of phenolic groups. Electronic spectroscopic data are in agreement with an octahedral geometrical structure. Thermal degradation analyses in nitrogen gas were used to investigate the number and location of water molecules. The chemical formulae of metal complexes were confirmed by microanalytical data. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* were calculated from the DTG curves using Coats Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. Nematicidal activities indicate that the ligand exhibit greater activity when compared to its complexes. In addition metal complexes displayed good moderate nematicidal activities.  相似文献   
45.
In this paper, a novel lanthanum metal–organic framework La‐MOF was prepared via hydrothermal and reflux methods. The La‐MOF was achieved through the reaction of a 5‐amino‐isophthalic acid with 1, 2‐phenylenediamine and lanthanum chloride. The prepared La‐MOF structure was confirmed by XRD, mass spectrometry, IR, UV–Vis and elemental analysis, whereas the size, and morphology was examined by FE‐SEM/EDX and HR‐TEM. The results indicated that the La‐MOF prepared via both methods have the same structure and composition. Meanwhile, the MOF yield, reaction time, morphology, physiochemical and sensing properties were highly depended on the used preparation method. The photoluminescence (PL) study was carried out for the La‐MOF, and the results showed that La‐MOF exhibits strong emission at 558 nm after excitation at 369 nm. Moreover, the PL data indicating that the La‐MOF has highly selective sensing properties for iron (III) competing with different metal ions. The Stern‐Völmer graph shows a linear calibration curve which achieved over a concentration range 1.0–500 μM of Fe3+ with a correlation coefficient, detection, and quantitation limits 0.998, 1.35 μM and 4.08 μM, respectively. According to the remarkable quenching of the PL intensity of La‐MOF using various concentrations of Fe3+, it was successfully used as a sensor for Fe3+detecting in different water resources (pure and waste) samples. The quenching mechanism was studied and it has a dynamic type and due to efficient energy transfer between the La‐MOF and Fe3+.  相似文献   
46.
Research on Chemical Intermediates - The inhibition effect of two selected polyethylene glycols (PEGs) with different molecular weight and the synergistic effect with rare earth Ce4+ ions on...  相似文献   
47.
48.
Two novel amino acids imine ligands (H2L1 and H2L2) have been synthesized using green condensation reaction from 2‐[3‐Amino‐5‐(2‐hydroxy‐phenyl)‐5‐methyl‐1,5‐dihydro‐[1, 2, 4]triazol‐4‐yl]‐3‐(1H‐indol‐3‐yl)‐propionic acid with benzaldehyde/p‐flouro benzaldehyde (1:1 molar ratio) in the presence of lemon juice as a natural acidic catalyst in aqueous medium. Their transition metal complexes have been prepared in a molar ratio (1:1). Characterization of the ligands and complexes using elemental analysis, spectroscopic studies, 1HNMR, 13CNMR, and thermal analysis has been reported. E*, ΔH*, ΔS* and ΔG* thermodynamic parameters, were calculated to throw more light on the nature of changes accompanying the thermal decomposition process of these complexes. The molar conductance measurement of metal complexes showed nonelectrolyte behavior. The metal complexes of the two ligands have tetrahedral geometry with a general molecular structure [M(H2L)Xn], where [(M = Mn (II), Co (II), Cu (II) and Zn (II), X = Cl, n = 2]; M = VO (II), X = SO4, n = 1] for H2L1. [M = Co (II), Cu (II), Zn (II)] for H2L2. Antibacterial activity of the complexes against (Bacillis subtilis, Micrococcus luteus, Escherichia coli), also antifungal activity against (Aspergillus niger, Candida Glabarta, Saccharomyces cerevisiae) have been screened. The results showed that all complexes have antimicrobial activity higher than free ligands. Molecular docking studies results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of targeting PDB code: 1SC7 (Human DNA Topo‐isomerase I).  相似文献   
49.
An ultrasound-assisted nanoscaled supramolecular coordination polymer (nanosized 1′ ) has been synthesized using a self-assembly reaction of K3[Cu (CN)4] and hexamethylenetetramine in the presence of Me3SnCl under ambient conditions. Nanosized 1′ was examined using elemental analysis, Fourier transform–infrared, transmission electron microscopy, scanning electron microscopy and X-ray powder diffractions. It was structurally compared with the single crystal supramolecular coordination polymer 3[Cu6(CN)7(C6H12N4)2(OH3)]; SCP 1. The photocatalytic activities of nanosized 1′ and SCP 1 toward different hazardous organic dyes were determined under ambient, UV-light irradiation and ultrasonic conditions. SCP 1 and nanosized 1′ as heterogeneous nanoparticles catalysts exhibited high catalytic activity for degradation of Congo Red, Methyl Violet 2B and Methylene Blue dyes. The effects of operational parameters on catalytic degradation process, identification of the degradation products and recycling of the catalyst were also investigated. SCP 1 and nanosized 1′ are recyclable heterogeneous catalysts and can be reused with efficient activities. The mechanism of degradation using different scavenger techniques iss proposed and discussed. The catalytic oxidation process is mainly caused by OH radicals.  相似文献   
50.
The present work succeeded to develop new optional procedures to enhance the separation process of thorium and REEs. Selective precipitation of thorium with pyrophosphate was successfully attained for the upscale level in which, complete and efficient thorium separation (99%) was achieved with relatively low co-precipitation of REEs (average 15%) and Fe(III) (2.6%). On the other hand, promising and costless method has been developed to optimize the selective precipitation of REEs by adjusting the ratio of the free acids H2SO4 to H3PO4 at 5:1. It could be obviously demonstrated that about 65.3% of LREEs could be precipitated with a minor amount of thorium 11.9%. Finally, this proposed method could be successfully applied for production of Th and REEs with relatively high yield and purity in addition to low-cost–benefit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号