首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
  国内免费   1篇
化学   28篇
力学   1篇
数学   7篇
物理学   34篇
  2023年   3篇
  2022年   4篇
  2021年   18篇
  2020年   7篇
  2019年   3篇
  2018年   7篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
61.
A new method is proposed to fabricate nanocrystalline titania (TiO2) films of controlled crystalline size and film thickness. The method uses the laminar, premixed, stagnation flame approach, combining particle synthesis and film deposition in a single step. A rotating disc serves as a combination of substrate-holder and stagnation-surface that stabilizes the flame. Disc rotation repetitively passes the substrates over a thin-sheet, fuel-lean ethylene–oxygen–argon flame doped with titanium tetraisopropoxide. Convective cooling of the back side of the disc keeps the substrate well below the flame temperature, allowing thermophoretic forces to deposit a uniform film of particles that are nucleated and grown via the flame stabilized just below the surface. The particle film grows typically at 1 μm/s. The film is made of narrowly distributed, crystalline TiO2 several nanometers in diameter and forms with a 90% porosity. Analysis shows that the rotation of the stagnation-surface does not reduce the stability of a stagnation flame, nor does it affect the fundamental chemistry of particle nucleation and growth that occurs between the flame and the stagnation surface.  相似文献   
62.
JPC – Journal of Planar Chromatography – Modern TLC - A simple, sensitive, precise, rapid, and reliable high-performance thin-layer chromatographic (HPTLC) method for the simultaneous...  相似文献   
63.
Osteoarthritis is a common joint disorder that is most prevalent in the knee joint. Knee osteoarthritis (OA) can be characterized by the gradual loss of articular cartilage (AC). Formation of lesion, fissures and cracks on the cartilage surface has been associated with degenerative AC and can be measured by morphological assessment. In addition, loss of proteoglycan from extracellular matrix of the AC can be measured at early stage of cartilage degradation by physiological assessment. In this case, a biochemical phenomenon of cartilage is used to assess the changes at early degeneration of AC. In this paper, a method to measure local sodium concentration in AC due to proteoglycan has been investigated. A clinical 1.5-T magnetic resonance imaging (MRI) with multinuclear spectroscopic facility is used to acquire sodium images and quantify local sodium content of AC. An optimised 3D gradient-echo sequence with low echo time has been used for MR scan. The estimated sodium concentration in AC region from four different data sets is found to be ~ 225 ± 19 mmol/l, which matches the values that has been reported for the normal AC. This study shows that sodium images acquired at clinical 1.5-T MRI system can generate an adequate quantitative data that enable the estimation of sodium concentration in AC. We conclude that this method is potentially suitable for non-invasive physiological (sodium content) measurement of articular cartilage.  相似文献   
64.
Shear viscosity is examined throughout the entire range of strongly coupled states of two-dimensional complex (dusty) plasma liquids (CDPLs). We have employed equilibrium molecular dynamics (EMD) simulation to compute the shear viscosity coefficients of CDPLs. In the strongly coupled liquid region, the values of valid viscosity coefficient can be estimated only in order of magnitude. The variations in the valid viscosity coefficients with screening strength (κ) and Coulomb coupling strengths (Γ) are observed. A systematic dependence of shear viscosity on κ is observed for an intermediate and higher Γ. The investigations showed that the position of the minimum viscosity coefficient shifts towards higher Γ as κ increases. The computational results for the entire range of liquid states of the strongly coupled dusty plasma obtained using the shear autocorrelation functions are in good agreement with the available simulation results and experimental data. It is shown that new simulations extended the range of plasma states (Γ, κ) used in our earlier simulation results for the existence of a finite minimum possible viscosity coefficient and it is also dependent on plasma states.  相似文献   
65.
This review updates the explosive development of gold catalysis for organic transformation focusing on the current literature over last 3 years. Recent investigations have shown that gold catalysis provides catalytically active systems, whereas selectivity and reusability are advantages over noncatalyzed organic transformations. The collected literature is focusing for new organic reactions and synthetic methodologies. Gold can also be suggested for green processes dedicated to fine chemicals, pharmaceuticals, and the food industry due to its recognized biocompatibility. The current review is focused on new methods in the organic synthesis that could be of interest in the wide area of organic chemistry for developing new catalytic pathways.  相似文献   
66.
Ammonia (NH3) is recognized as a carbon-free hydrogen-carrier fuel with a high content of hydrogen atoms per unit volume. Recently, ammonia has received increasing attention as a promising alternative fuel for internal combustion engine and gas turbine applications. However, the viability of ammonia fueling future combustion devices has several barriers to overcome. To overcome the challenge of its low reactivity, it is proposed to blend it with a high-reactivity fuel. In this work, we have investigated the combustion characteristics of ammonia/diethyl ether (NH3/DEE) blends using a rapid compression machine (RCM) and a constant volume spherical reactor (CVSR). Ignition delay times (IDTs) of NH3/DEE blends were measured using the RCM over a temperature range of 620 to 942 K, pressures near 20 and 40 bar, equivalence ratios (Φ) of 1 and 0.5, and a range of mole fractions of DEE, χDEE, from 0.05 to 0.2 (DEE/NH3 = 5 – 20%). Laminar burning velocities of NH3/DEE premixed flames were measured using the CVSR at 298 K, 1 bar, Φ of 0.9 to 1.3, and χDEE from 0.1 to 0.4. Our results indicate that DEE promotes the reactivity of fuel blends resulting in significant shortening of the ignition delay times of ammonia under RCM conditions. IDTs expectedly exhibited strong dependence on pressure and equivalence ratio for a given blend. Laminar burning velocity was found to increase with increasing fraction of DEE. The burnt gas Markstein length increased with equivalence ratio for χDEE = 0.1 as seen in NH3-air flames, while the opposite evolution of Markstein length was observed with Φ for 0.1 < χDEE ≤ 0.4, as observed in isooctane-air flames. A detailed chemical kinetics model was assembled to analyze and understand the combustion characteristics of NH3/DEE blends.  相似文献   
67.
All-solid-state lithium ion batteries (ASS-LIBs) are promising due to their safety and higher energy density as compared to that of conventional LIBs. Over the next few decades, tremendous amounts of spent ASS-LIBs will reach the end of their cycle life and would require recycling in order to address the waste management issue along with reduced exploitation of rare elements. So far, only very limited studies have been conducted on recycling of ASS-LIBS. Herein, we investigate the recycling of the Li7La3Zr2O12 (LLZO) solid-state electrolyte in a LiFePO4/LLZO/Li4Ti5O12 system using a hydrometallurgical approach. Our results show that different concentration of the leaching solutions can significantly influence the final product of the recycling process. However, it was possible to recover relatively pure La2O3 and ZrO2 to re-synthesize the cubic LLZO phase, whose high purity was confirmed by XRD measurements.  相似文献   
68.
Synthetic pollutants are a looming threat to the entire ecosystem, including wildlife, the environment, and human health. Polyhydroxyalkanoates (PHAs) are natural biodegradable microbial polymers with a promising potential to replace synthetic plastics. This research is focused on devising a sustainable approach to produce PHAs by a new microbial strain using untreated synthetic plastics and lignocellulosic biomass. For experiments, 47 soil samples and 18 effluent samples were collected from various areas of Punjab, Pakistan. The samples were primarily screened for PHA detection on agar medium containing Nile blue A stain. The PHA positive bacterial isolates showed prominent orange–yellow fluorescence on irradiation with UV light. They were further screened for PHA estimation by submerged fermentation in the culture broth. Bacterial isolate 16a produced maximum PHA and was identified by 16S rRNA sequencing. It was identified as Stenotrophomonas maltophilia HA-16 (MN240936), reported first time for PHA production. Basic fermentation parameters, such as incubation time, temperature, and pH were optimized for PHA production. Wood chips, cardboard cutouts, plastic bottle cutouts, shredded polystyrene cups, and plastic bags were optimized as alternative sustainable carbon sources for the production of PHAs. A vital finding of this study was the yield obtained by using plastic bags, i.e., 68.24 ± 0.27%. The effective use of plastic and lignocellulosic waste in the cultivation medium for the microbial production of PHA by a novel bacterial strain is discussed in the current study.  相似文献   
69.
Journal of Thermal Analysis and Calorimetry - This paper explores the influence of entropy production on MHD hybrid nanofluid (Al2O3–Cu/H2O) flow due to permeable stretching sheet with...  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号