首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   14篇
  国内免费   11篇
化学   121篇
晶体学   1篇
力学   5篇
数学   55篇
物理学   125篇
  2023年   3篇
  2021年   2篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   3篇
  2014年   6篇
  2013年   22篇
  2012年   17篇
  2011年   15篇
  2010年   9篇
  2009年   5篇
  2008年   14篇
  2007年   15篇
  2006年   21篇
  2005年   13篇
  2004年   19篇
  2003年   10篇
  2002年   2篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   11篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   5篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有307条查询结果,搜索用时 31 毫秒
81.
82.
83.
84.
[reaction: see text] Reactions in which zeolites are modified with chiral inductors to serve as media for chiral induction are often limited by the propensity of both substrate and inductor to occupy the same supercage. Herein, we report a "ship in bottle" strategy utilizing the thermal decomposition of dioxetanes obtained from oxazolidinone-substituted enecarbamates for the enantioselective generation of methyl desoxybenzoin (MDB). Photoexcitation of the supramolecular geminate molecular pair results in enrichment of the opposite enantiomer of MDB.  相似文献   
85.
86.
In order to separate a high‐performance liquid chromatography with diode array detector (HPLC‐DAD) data set to chromatogram peaks and spectra for all compounds, a separation method based on the model of generalized Gaussian reference curve measurement (GGRCM) and the algorithm of multi‐target intermittent particle swarm optimization (MIPSO) is proposed in this paper. A parameter θ is constructed to generate a reference curve r(θ) for a chromatogram peak based on its physical principle. The GGRCM model is proposed to calculate the fitness ε(θ) for every θ, which indicates the possibility for the HPLC‐DAD data set to contain a chromatogram peak similar to the r(θ). The smaller the fitness is, the higher the possibility. The algorithm of MIPSO is then introduced to calculate the optimal parameters by minimizing the fitness mentioned earlier. Finally, chromatogram peaks are constructed based on these optimal parameters, and the spectra are calculated by an estimator. Through the simulations and experiments, the following conclusions are drawn: (i) the GGRCM‐MIPSO method can extract chromatogram peaks from simulation data set without knowing the number of the compounds in advance even when a severe overlap and white noise exist and (ii) the GGRCM‐MIPSO method can be applied to the real HPLC‐DAD data set. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
87.
On photooxygenation of the optically active Z/E enecarbamates 1 (X = i-Pr) and 2 (X = Me) equipped with the oxazolidinone chiral auxiliary in methylene-blue (MB)-incorporated, alkali-metal (M = Li, Na, K, Cs, Rb), exchanged Y-type zeolites (MY-MB), oxidative cleavage of the alkenyl functionality releases the enantiomerically enriched methyldesoxybenzoin (MDB) product. The extent (%ee) and/or the sense (R or S) of the stereoselectivity in the formation of the MDB product depends on the choice of the alkyl substiuent (i-Pr or Me) at the C-4 position of the oxazolidinone chiral auxiliary, the Z/E configuration of the alkene functionality in the enecarbamates, and the type of alkali metal in the zeolite. Most significantly-the highlight of this study-is the reversed sense (R or S) in the stereoselection when the photooxygenation is run in CDCl3 solution versus inside the MY-MB zeolite. As a mechanistic rationale for this novel stereochemical behavior, we propose the combined action of spatial confinement and metal-ion coordination (assessed by density-functional calculations) of the substrate within the zeolite supercage, both of which greatly reduce the freedom of the substrate and entropically manipulate the stereochemical outcome.  相似文献   
88.
We have investigated the lysine side chain amines in the 34 kDa catalytic domain from Cellulomonas fimi beta-(1,4)-glycosidase Cex (or CfXyn10A) using 1H-detected 15N heteronuclear correlation NMR spectroscopy. Signals from the 1Hzeta ( approximately 8 ppm) and 15Nzeta ( approximately 35 ppm) of Lys302 in the unmodified enzyme and Lys47 in a trapped cellobiosyl-enzyme intermediate were detected in a 1H-15N HMQC spectrum (pH 6.5 and 30 degrees C). The amine of Lys302 forms a buried ion pair, and that of Lys47 is hydrogen bonded to the cellobioside. Both lysines are positively charged, as unambiguously demonstrated by the splitting of their 15Nzeta signals into quartets (|1JNH| approximately 75 Hz) in a 1H-15N HSQC spectrum recorded without 1H decoupling during 15N evolution. Qualitative insights into the dynamic properties of these lysines are also provided by the deviations of their quartet intensity ratios from that of approximately 3:1:1:3 expected for a highly mobile amine. On the basis of the observed ratios of approximately 1:1:1:1 for the quartet of Lys302 and approximately 0.5:1:1:0.5 for Lys47, the amine of the latter active site residue is most rigidly positioned. Signals from at least 8 and 10 additional positively charged, mobile amines in Cex were observed at 10 degrees C and pH 6.5 and 5.6, respectively. By using conditions of reduced temperature, slightly acidic pH, and low general base concentrations, as well as water flipback pulses to minimize the effects of hydrogen exchange, 1H-15N correlation experiments provide a sensitive route to directly investigate the charge states and dynamic properties of the N-terminal and side chain amines in proteins and protein complexes.  相似文献   
89.
Three-Dimensional Delaunay Mesh Generation   总被引:1,自引:0,他引:1  
We propose an algorithm to compute a conforming Delaunay mesh of a bounded domain in specified by a piecewise linear complex. Arbitrarily small input angles are allowed, and the input complex is not required to be a manifold. Our algorithm encloses the input edges with a small buffer zone, a union of balls whose sizes are proportional to the local feature sizes at their centers. In the output mesh, the radius-edge ratio of the tetrahedra outside the buffer zone is bounded by a constant independent of the domain, while that of the tetrahedra inside the buffer zone is bounded by a constant depending on the smallest input angle. Furthermore, the output mesh is graded. Our work is the first that provides quality guarantees for Delaunay meshes in the presence of small input angles.  相似文献   
90.
ProteinChip surface‐enhanced laser desorption/ionization technology and magnetic beads‐based ClinProt system are commonly used for semi‐quantitative profiling of plasma proteome in biomarker discovery. Unfortunately, the proteins/peptides detected by MS are non‐recoverable. To obtain the protein identity of a MS peak, additional time‐consuming and material‐consuming purification steps have to be done. In this study, we developed a magnetic beads‐based proteomic fingerprinting method that allowed semi‐quantitative proteomic profiling and micropreparative purification of the profiled proteins in parallel. The use of different chromatographic magnetic beads allowed us to obtain different proteomic profiles, which were comparable to those obtained by the ProteinChip surface‐enhanced laser desorption/ionization technology. Our assays were semi‐quantitative. The normalized peak intensity was proportional to concentration measured by immunoassay. Both intra‐assay and inter‐assay coefficients of variation of the normalized peak intensities were in the range of 4–30%. Our method only required 2 μL of serum or plasma for generating enough proteins for semi‐quantitative profiling by MALDI‐TOF‐MS as well as for gel electrophoresis and subsequent protein identification. The protein peaks and corresponding gel spots could be easily matched by comparing their intensities and masses. Because of its high efficiency and reproducibility, our method has great potentials in clinical research, especially in biomarker discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号