首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
化学   26篇
力学   1篇
数学   2篇
物理学   10篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1928年   1篇
  1895年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
31.
32.
The kinetic and thermodynamic analysis of biapenem degradation was conducted during acid–base hydrolysis, under the influence of buffer components and in the solid state at increased temperature (dry air) and relative air humidity (RH > 50%). The effects of the initial concentration of biapenem and the formation of degradation products on its stability were investigated.  相似文献   
33.
Reaction of the octadentate ligand 2,6-bis{3-[N,N-di(2-pyridylmethyl)amino]propoxy}benzoic acid (LH) with Fe(ClO4)3 leads to the formation of the tetranuclear complexes [Fe4(mu-O)2(LH)2(ClCH2-CO2)4](ClO4)4 (1), [{Fe2(mu-O)L(R-CO2)}2](ClO4)4 (2 R = C6H5-, 3 R = CH3-, 4, R = ClCH2-). The crystal structures of complexes 1 and 2 reveal that they consist of two Fe(III)2(mu-O)(mu-RCO2)2 cores that are linked via the two LH/L ligands to give a "dimer of dimers" structure. Complex assumes a helical shape, with protonated carboxylic acid moieties of the two ligands forming a hydrogen-bonded pair at the center of the cation. In complexes 2, 3 and 4, central carboxylates of the two ligands bridge the iron ions in each of the two Fe2O units, with an interdimer iron-iron separation of approximately 10 A and an intradimer separation of approximately 3.1 A. The second carboxylate bridge within the Fe2O units is defined by exogenous benzoate (2), acetate (3) or chloroacetate (4) ligands. The aqua complex [{Fe2(mu-O)L(H2O)2}2](ClO4)6 (5) is proposed to have a similar structure, but with the exogenous bridging carboxylates replaced by two terminal water ligands. These complexes exhibit electronic and M?ssbauer spectral features that are similar to those of (mu-oxo)diiron(III) proteins as well as other related (mu-oxo)bis(mu-carboxylato)diiron(III) complexes. This similarity shows that these properties are not significantly affected by the nature of the bridging exogenous carboxylate, and that the octadentate framework ligand is essential in stabilizing the "dimer of dimers" structure. This structural feature remains in highly diluted solution (10(-5) M) as evidenced by electrospray ionization mass-spectroscopy (ES MS). Cyclic voltammetric studies of complexes 2 and 5 showed two irreversible two-electron reductions, indicating that the two Fe2O units of the tetranuclear complexes behave as distinct redox entities. Complexes 2, 3 and, especially, the aqua complex 5 are active alkane oxidation catalysts. Catalytic reactions carried out with alkane substrate molecules and hydrogen peroxide predominantly gave alcohols. High stereospecificity in the oxidation of cis-1,2-dimethylcyclohexane supports the metal-based molecular mechanism of O-insertion into C-H bonds postulated for non-heme iron enzymes such as methane monooxygenase.  相似文献   
34.
Fe(3,6-DBSQ)(3) has been prepared by reacting 3,6-di-tert-butyl-1,2-benzoquinone with Fe(CO)(5). The complex has been characterized structurally [orthorhombic, Pbca, a = 18.277(5) ?, b = 11.634(3) ?, c = 39.903(10) ?, V = 8485(4) ?(3), Z = 8, R = 0.063], electrochemically, and magnetically. Ligand-based redox couples are observed in electrochemical experiments that consist of reversible or quasireversible Cat/SQ steps at negative potentials and irreversible SQ/BQ oxidations at positive potentials. Magnetic measurements show temperature dependence that arises from antiferromagnetic exchange. Data have been fit to an expression that includes the effects of both Fe-SQ and SQ-SQ exchange with the result that J(SQ-SQ) is larger in magnitude than J(Fe-SQ). In methanol, the complex undergoes solvolysis to form [Fe(3,6-DBSQ)(2)(&mgr;-OMe)](2). Structural characterization [triclinic, P&onemacr;, a = 11.441(2) ?, b = 11.514(2) ?, c = 14.552(2) ?, alpha = 67.86(1) degrees, beta = 70.51(1) degrees, gamma = 72.79(1) degrees, V = 1641.8(5) ?(3), Z = 1, R = 0.048] has shown that the molecule is a centrosymmetric dimer with no close intermolecular contacts. The temperature dependence of magnetic measurements has been fit to a model consisting of two interacting S = (3)/(2) centers that arise from strong Fe-SQ exchange with J(Fe-Fe) = -22.4 cm(-1).  相似文献   
35.
36.
37.
38.
The redox-active quinone-functionalized macrocyclic ligand 1,4,14,17-tetrahydroxyhemiporphyrazine, H2hp(OH)4, has been synthesized and its zinc complex, [Zn(hp(OH)4)(py)], found to exhibit intense fluorescence.  相似文献   
39.
Treatment of (silox)3Ta (1, silox = tBu3SiO) with BH3.THF and BCl2Ph afforded (silox)3Ta(BH3) (2) and (silox)3Ta(eta2-B,Cl-BCl2Ph) (3), which are both remarkably stable Ta(III) compounds. NMe3 and ethylene failed to remove BH3 from 2, and no indication of BH3 exchange with BH3.THF-d8 was noted via variable-temperature 1H NMR studies. Addition of BH3.THF to (silox)3TaH2 provided the borohydride-hydride (silox)3HTa(eta3-BH4) (5), and its thermolysis released H2 to generate 2. Exposure of 2 to D2 enabled the preparation of isotopologues (silox)3Ta(BH3-nDn) (n = 0, 2; 1, 2-D; 2, 2-D2; 3, 2-D3) for isotopic perturbation of chemical shift studies, but these failed to distinguish between "inverse adduct" (i.e., (silox)3Ta-->BH3) or (silox)3Ta(eta2-B,H-BH3) forms of 2. Computational models (RO)3Ta(BH3) (R = H, 2'; SiH3, 2SiH SiMe3, 2SiMe, and SitBu3, 2SiBu) were investigated to assess the relative importance of steric and electronic effects on structure and bonding. With small R, eta2-B,H structures were favored, but for 2SiMe and 2SiBu, the dative structure proved to be similar in energy. The electonic and vibrational features of both structure types were probed. The IR spectrum of 2 was best matched by the eta2-B,H conformer of 2SiBu. In related computations pertaining to 3, small R models favored the oxidative addition of a BCl bond, while with R = SitBu3 (3SiBu), an excellent match with its X-ray crystal structure revealed the critical steric influence of the silox ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号