首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   3篇
化学   14篇
物理学   5篇
  2021年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2004年   2篇
  2002年   1篇
  1969年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
12.
Design of novel DNA probes to inhibit specific repair pathways is important for basic science applications and for use as therapeutic agents. As shown previously, single pyrophosphate (PP) and O-ethyl-substituted pyrophosphate (SPP) modifications can inhibit the DNA glycosylase activities on damaged DNA. To understand the structural basis of this inhibition, the influence of the PP and SPP internucleotide groups on the helical parameters and geometry of a double-stranded DNA was studied by using molecular modeling tools including molecular dynamics and quantum mechanical-molecular mechanical (QM/MM) approaches. Native and locally modified PP- and SPP-containing DNA duplexes of dodecanucleotide d(C1G2C3G4A5A6T7T8C9G10C11G12) were simulated in aqueous solution. The energies and forces were computed by using the PBE0/6-31+G** approach in the QM part and the AMBER force-field parameters in the MM part. Analysis of the local base-pair helical parameters, internucleotide distances, and overall global structure at the located stationary points revealed a close similarity of the initial and modified duplexes, with only torsion angles of the main chain being altered in the vicinity of introduced chemical modification. Results show that the PP and SPP groups are built into a helix structure without elongation of the internucleotide distance due to flipping-out of phosphate group from the sugar-phosphate backbone. The mechanism of such embedding has only a minor impact on the base pairs stacking and Watson-Crick interactions. Biochemical studies revealed that the PP and SPP groups immediately 5', but not 3', to the 8-oxoguanosine (8oxodG) inhibit translesion synthesis by a DNA polymerase in vitro. These results suggest that subtle perturbations of the DNA backbone conformation influence processing of base lesions.  相似文献   
13.
DS Agosta  AV Skripov 《哲学杂志》2013,93(2):299-306
Resonant ultrasound spectroscopy was used to measure the elastic constants of bcc Ta0.33V0.67 over the temperature range 3.5–300?K; the results were compared to earlier measurements on C15 TaV2. The temperature dependence of the polycrystalline shear modulus is completely different in the two phases; that of the bcc phase decreases with temperature whereas that of the C15 phases increases in an anomalous fashion. This difference is consistent with a model involving doubly-degenerate levels at the X point of the Brillouin zone in the C15 phase with the Fermi level lying near the doubly degenerate level. This model accounted for the unusual behaviour of the C15 phase. Debye temperatures were determined from the ultrasonic measurements: 295?K for the C15 phase and 315?K for the bcc phase.  相似文献   
14.
Green Fluorescent Protein (GFP) is known to undergo excited-state proton transfer (ESPT). Formation of a short H-bond favors ultrafast ESPT in GFP-like proteins, such as the GFP S65T/H148D mutant, but the detailed mechanism and its quantum nature remain to be resolved. Here we study in vacuo, light-induced proton transfer from the GFP chromophore in hydrogen-bonded complexes with two anionic proton acceptors, I and deprotonated trichloroacetic acid (TCA). We address the role of the strong H-bond and the quantum mechanical proton-density distribution in the excited state, which determines the proton-transfer probability. Our study shows that chemical modifications to the molecular network drastically change the proton-transfer probability and it can become strongly wavelength dependent. The proton-transfer branching ratio is found to be 60 % for the TCA complex and 10 % for the iodide complex, being highly dependent on the photon energy in the latter case. Using high-level ab initio calculations, we show that light-induced proton transfer takes place in S1, revealing intrinsic photoacid properties of the isolated GFP chromophore in strongly bound H-bonded complexes. ESPT is found to be very sensitive to the topography of the highly anharmonic potential in S1, depending on the quantum-density distribution upon vibrational excitation. We also show that the S1 potential-energy surface, and hence excited-state proton transfer, can be controlled by altering the chromophore microenvironment.  相似文献   
15.
We considered a series of model systems for treating the photoabsorption of the 11-cis retinal chromophore in the protonated Schiff-base form in vacuum, solutions, and the protein environment. A high computational level, including the quantum mechanical-molecular mechanical (QM/MM) approach for solution and protein was utilized in simulations. The S0-S1 excitation energies in quantum subsystems were evaluated by means of an augmented version of the multiconfigurational quasidegenerate perturbation theory (aug-MCQDPT2) with the ground-state geometry parameters optimized in the density functional theory PBE0/cc-pVDZ approximation. The computed positions of absorption bands lambdamax, 599(g), 448(s), and 515(p) nm for the gas phase, solution, and protein, respectively, are in excellent agreement with the corresponding experimental data, 610(g), 445(s), and 500(p) nm. Such consistency provides a support for the formulated qualitative conclusions on the role of the chromophore geometry, environmental electrostatic field, and the counterion in different media. An essentially nonplanar geometry conformation of the chromophore group in the region of the C14-C15 bond was obtained for the protein, in particular, owing to the presence of the neighboring charged amino acid residue Glu181. Nonplanarity of the C14-C15 bond region along with the influence of the negatively charged counterions Glu181 and Glu113 are found to be important to reproduce the spectroscopic features of retinal chromophore inside the Rh cavity. Furthermore, the protein field is responsible for the largest bond-order decrease at the C11-C12 double bond upon excitation, which may be the reason for the 11-cis photoisomerization specificity.  相似文献   
16.
Isomerizations of the retinal chromophore were investigated using the IMS‐IMS technique. Four different structural features of the chromophore were observed, isolated, excited collisionally, and the resulting isomer and fragment distributions were measured. By establishing the threshold activation voltages for isomerization for each of the reaction pathways, and by measuring the threshold activation voltage for fragmentation, the relative energies of the isomers as well as the energy barriers for isomerization were determined. The energy barrier for a single cis–trans isomerization is (0.64±0.05) eV, which is significantly lower than that observed for the reaction within opsin proteins.  相似文献   
17.
The mechanism of hydrolysis of deprotonated methyl triphosphate (MTP) to methyl diphosphate (MDP) and inorganic phosphate (Pi) in water clusters in the presence and absence of magnesium cations has been modeled. Modeling has been performed by the effective fragment potential-based quantum mechanical/molecular mechanical method. The energies and energy derivatives in the quantum subsystem including MTP, reacting water molecules, and Mg2+ has been calculated at the density functional theory (B3LYP) level, whereas water-water interactions have been described by the TIP3P model potential. The minimum-energy path for the reaction MTP + H2O → MDP + Pi is consistent with a two-stage dissociative process in the absence of Mg2+ and with a one-stage mechanism in the presence of Mg2+.  相似文献   
18.
A new hybrid QM/DIM approach aimed at describing equilibrium structures and spectroscopic properties of medium size mixed molecular clusters is developed. This methodology is applied to vibrational spectra of hydrogen chloride and hydrogen fluoride clusters with up to four monomer molecules embedded in argon shells Arn(H(Cl/F))m (n = 1-62, m = 1-4). The hydrogen halide complexes (QM part) are treated at the MP2/aug-cc-pVTZ level, while the interaction between HX molecules and Ar atoms (MM part) is described in terms of the semiempirical DIM methodology, based on the proper mixing between neutral and ionic states of the system [Grigorenko et al., J. Chem. Phys. 104, 5510 (1996)]. A detailed analysis of the resulting topology of the QM/DIM potential energy (hyper-)surface in the triatomic subsystem Ar-HX reveals more pronounced nonadditive atomic induction and dispersion contributions to the total interaction energy in the case of the Ar-HCl system. An extension of the original analytical DIM-based potential in the frame of the present model as well as the current limitations of the method are discussed. A modified algorithm for the gradient geometry optimization, along with partly analytical force constant matrix evaluation, is developed to treat large cages of argon atoms around molecular clusters. Calculated frequency redshifts of HX stretching vibrations in the mixed clusters relative to the isolated hydrogen-bonded complexes are in good agreement with experimental findings.  相似文献   
19.
Molecular ion calorimetry: A technique for measuring the heat capacity of an isolated gas-phase chromophore is presented and applied to the retinal protonated Schiff base. The potential use of this technique for studying barriers for internal rotations is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号