首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1713篇
  免费   84篇
化学   829篇
晶体学   5篇
力学   75篇
数学   403篇
物理学   485篇
  2023年   29篇
  2021年   26篇
  2020年   33篇
  2019年   23篇
  2018年   35篇
  2017年   34篇
  2016年   82篇
  2015年   43篇
  2014年   52篇
  2013年   101篇
  2012年   46篇
  2011年   33篇
  2010年   44篇
  2009年   38篇
  2008年   42篇
  2007年   58篇
  2006年   46篇
  2005年   25篇
  2004年   16篇
  2003年   25篇
  2002年   29篇
  2001年   24篇
  2000年   22篇
  1999年   28篇
  1998年   25篇
  1997年   18篇
  1996年   30篇
  1995年   28篇
  1994年   19篇
  1993年   17篇
  1991年   26篇
  1990年   22篇
  1989年   15篇
  1987年   18篇
  1986年   20篇
  1985年   20篇
  1982年   15篇
  1981年   21篇
  1980年   22篇
  1979年   19篇
  1978年   18篇
  1977年   27篇
  1976年   14篇
  1973年   14篇
  1938年   15篇
  1934年   17篇
  1933年   14篇
  1927年   14篇
  1925年   14篇
  1915年   14篇
排序方式: 共有1797条查询结果,搜索用时 406 毫秒
71.
An unprecedented compound class of functional organic hybrids consisting of a photoswitchable norbornadiene building block and a redoxactive chromophore, namely naphthalene diimide, were designed and synthesized. Within these structures the capability of rylene chromophores to function as a redox active catalyst upon their photoexcitation was utilized to initiate the oxidative back-conversion of the in situ formed quadricyclane unit to its norbornadiene analogue. In this way successive photoexcitation at two different wavelengths enabled a controlled photoswitching between the two isomerical states of the hybrids. Beyond this prove of concept, the dependency of the reaction rate to the intramolecular distance of the two functional molecular building blocks as well as the concentration of the photoexcited sample was monitored. The experimental findings and interpretations were furthermore supported by quantum chemical investigations.  相似文献   
72.
Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nanoparticle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.  相似文献   
73.
Capillary sieving electrophoresis utilizing SDS (CE(SDS)) is one of the most applied methods for the analysis of antibody (mAb) size heterogeneity in the biopharmaceutical industry. Inadequate peak identification of observed protein fragments is still a major issue. In a recent publication, we introduced an electrophoretic 2D system, enabling online mass spectrometric detection of generic CE(SDS) separated peaks and identification of several mAb fragments. However, an improvement regarding system stability and handling of the approach was desired. Here, we introduce a novel 8-port valve in conjunction with an optimized decomplexation strategy. The valve contains four sample loops with increased distances between the separation dimensions. Thus, successively coinjection of solvent and cationic surfactant without any additional detector in the second dimension is enabled, simplifying the decomplexation strategy. Removal efficiency was optimized by testing different volumes of solvents as presample and cationic surfactant as postsample zone. 2D measurements of the light and heavy chain of the reduced NIST mAb with the 8-port valve and the optimized decomplexation strategy demonstrates the increased robustness of the system. The presented novel set-up is a step toward routine application of CE(SDS)-CZE-MS for impurity characterization of proteins in the biopharmaceutical field.  相似文献   
74.
While alkyl-substituted siloxanes are widely known, virtually nothing is known about perfluoroalkyl siloxanes and their congener species, the silanols and silanolates. We recently reported on the tris(pentafluoroethyl)silanide ion, [Si(C2F5)3], which features Lewis amphoteric character deriving from the pentafluoroethyl substituents and their strong electron-withdrawing properties. Transferring this knowledge, we investigated the Lewis amphoteric behavior of the tris(pentafluoroethyl)silanolate, [Si(C2F5)3O]. In order to examine such Lewis amphoteric behavior, we first developed a strategy for the synthesis of the corresponding silanol Si(C2F5)3OH, which readily condenses at room temperature to the hexakis(pentafluoroethyl)disiloxane, (C2F5)3SiOSi(C2F5)3. Deprotonation of Si(C2F5)3OH employing a sterically demanding phosphazene base allows the characterization of the first example of a dimeric triorganosilanolate: the dianionic hexakis(pentafluoroethyl)disilanolate, [{Si(C2F5)3O}2]2−, implies Lewis amphoteric character of the monomeric [Si(C2F5)3O] anion.  相似文献   
75.
The reactivity of white phosphorus and yellow arsenic towards two different nickel nacnac complexes is investigated. The nickel complexes [(L1Ni)2tol] ( 1 , L1=[{N(C6H3iPr2-2,6)C(Me)}2CH]) and [K2][(L1Ni)2(μ,η1 : 1-N2)] ( 6 ) were reacted with P4, As4 and the interpnictogen compound AsP3, respectively, yielding the homobimetallic complexes [(L1Ni)2(μ-η2121-E4)] (E=P ( 2 a ), As ( 2 b ), AsP3 ( 2 c )), [(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 3 a ), As ( 3 b )) and [K@18-c-6(thf)2][L1Ni(η1 : 1-E4)] (E=P ( 7 a ), As ( 7 b )), respectively. Heating of 2 a , 2 b or 2 c also leads to the formation of 3 a or 3 b . Furthermore, the reactivity of these compounds towards reduction agents was investigated, leading to [K2][(L1Ni)2(μ,η2 : 2-P4)] ( 4 ) and [K@18-c-6(thf)3][(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 5 a ), As ( 5 b )), respectively. Compound 4 shows an unusual planarization of the initial Ni2P4-prism. All products were comprehensively characterized by crystallographic and spectroscopic methods.  相似文献   
76.
Flavonoids are a large group of plant secondary metabolites with a variety of biological properties and are therefore of interest to many scientists, as they can lead to industrially interesting intermediates. The anaerobic gut bacterium Eubacterium ramulus can catabolize flavonoids, but until now, the pathway has not been experimentally confirmed. In the present work, a chalcone isomerase (CHI) and an enoate reductase (ERED) could be identified through whole genome sequencing and gene motif search. These two enzymes were successfully cloned and expressed in Escherichia coli in their active form, even under aerobic conditions. The catabolic pathway of E. ramulus was confirmed by biotransformations of flavanones into dihydrochalcones. The engineered E. coli strain that expresses both enzymes was used for the conversion of several flavanones, underlining the applicability of this biocatalytic cascade reaction.  相似文献   
77.
Various (hetero)arenecarboxylic acids were converted to the corresponding Daugulis amides and nitrated selectively in the ortho‐position in the presence of [CuNO3(PPh3)2] and AgNO2 at 50 °C. A microwave‐assisted saponification allows regenerating the carboxylate group within minutes, which may then be removed tracelessly by protodecarboxylation, or substituted by aryl‐ or alkoxy‐groups via decarboxylative cross‐coupling.  相似文献   
78.
Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non‐conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium‐based nanomaterials. Here we show that ultra‐small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2(NO3)2] ? 3 H2O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X‐ray diffraction (PXRD), X‐ray absorption fine structure (XAFS), X‐ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements.  相似文献   
79.
The linear density-density response function represents a formulation of the generalized density response of a molecular (or extended) system to arbitrary perturbing potentials. We have recently established an approach for reducing the dimension of the (in principle infinite) eigenspace representation (the moment expansion) and generalized it to arbitrary self-adjoint, positive-definite, and compact linear operators. Here, we present a modified representation—the reduced eigensystem representation—which allows to define a trivial criterion for the convergence of the approximation to the density response. By means of this novel eigensystem-like structure, the remarkable reduction of the dimensionality becomes apparent for the calculation of the density-density response function.  相似文献   
80.
Three shape-persistent [4+4] imine cages with truncated tetrahedral geometry with different window sizes were studied as hosts for the encapsulation of tetra-n-alkylammonium salts of various bulkiness. In various solvents the cages behave differently. For instance, in dichloromethane the cage with smallest window size takes up NEt4+ but not NMe4 + , which is in contrast to the two cages with larger windows hosting both ions. To find out the reason for this, kinetic experiments were carried out to determine the velocity of uptake but also to deduce the activation barriers for these processes. To support the experimental results, calculations for the guest uptakes have been performed by molecular mechanics’ simulations. Finally, the complexation of pharmaceutical interested compounds, such as acetylcholine, muscarine or denatonium have been determined by NMR experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号