首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   506篇
  免费   13篇
化学   329篇
晶体学   7篇
力学   6篇
数学   53篇
物理学   124篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   11篇
  2018年   4篇
  2017年   5篇
  2015年   4篇
  2014年   17篇
  2013年   26篇
  2012年   21篇
  2011年   30篇
  2010年   12篇
  2009年   11篇
  2008年   22篇
  2007年   28篇
  2006年   23篇
  2005年   26篇
  2004年   18篇
  2003年   17篇
  2002年   13篇
  2001年   8篇
  2000年   12篇
  1999年   11篇
  1996年   7篇
  1995年   4篇
  1994年   10篇
  1993年   5篇
  1992年   10篇
  1991年   7篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   12篇
  1981年   5篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   5篇
  1973年   7篇
  1972年   3篇
  1971年   7篇
  1966年   3篇
排序方式: 共有519条查询结果,搜索用时 15 毫秒
91.
Tablets of five different compression formulations were investigated for their surface roughness using scanning electron microscopy and non-contact laser profilometry. It was found that the composition of a formulation not only influenced the tabletting properties of the powder mixtures, but also the surface properties of the final product. The addition of larger quantities of very brittle materials such as dibasic calcium phosphate dihydrate increased the surface roughness of tablets. An increase in tabletting pressure reduced the tablet surface roughness. Tablets were found to have smoother edges than faces, presumably due to the comparatively higher shear stress at the die walls and a polishing effect during tablet ejection. The assessment of surface roughness in three dimensions appeared more powerful than a simple line profile measurement.  相似文献   
92.
A non-destructive assay technique based on prompt gamma-ray neutron activation analysis for the determination of 238U to 232Th ratio in the mixed oxide fuel materials has been established. The method uses closely spaced high energy gamma-rays in the region of 4000 keV to 4150 keV enabling it to be applied for samples of any geometry and thickness without having any correction for gamma-ray attenuations and detection efficiencies.  相似文献   
93.
Nitrogenase catalyzes a reaction critical for life, the reduction of N(2) to 2NH(3), yet we still know relatively little about its catalytic mechanism. We have used the synchrotron technique of (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the dynamics of the Fe-S clusters in this enzyme. The catalytic site FeMo-cofactor exhibits a strong signal near 190 cm(-)(1), where conventional Fe-S clusters have weak NRVS. This intensity is ascribed to cluster breathing modes whose frequency is raised by an interstitial atom. A variety of Fe-S stretching modes are also observed between 250 and 400 cm(-)(1). This work is the first spectroscopic information about the vibrational modes of the intact nitrogenase FeMo-cofactor and P-cluster.  相似文献   
94.
Ginkgo biloba is one of the most popular herbal nutritional supplements, with terpene lactones and flavonoids being the two major active components. An on-line purification high-performance liquid chromatography/mass spectrometry (HPLC/MS) method was successfully developed for the quantitative determination of flavonoids and terpene lactones excreted in human urine after ingesting the herbal supplement. Satisfactory separation was obtained using a C18 capillary column made in-house with sample clean-up and pre-concentration achieved using a C18 pre-column with column switching. High selectivity and limits of detection of 1-18 ng/mL were achieved using a selected ion monitoring (SIM) scan in negative ion mode; the on-line solid-phase extraction (SPE) recovery of the active components in Ginkgo biloba determined in this study was greater than 75%.  相似文献   
95.
The influence of pH and ionic strength on permselective transport in nanoporous opal films prepared from 440 nm silica spheres was investigated by cyclic voltammetry in aqueous and acetonitrile solutions. Three-layer opal films were deposited from a 1.5 wt % colloidal solution of silica spheres onto 25-microm-diameter Pt microdisk electrodes shrouded in glass. The films were chemically modified by immersing them in a dry acetonitrile solution of 3-aminopropyl triethoxysilane. When the surface amino groups of the modified opal films are protonated and there is little or no supporting electrolyte present in solution, the flux of cationic redox species through the opal membrane is blocked because of electrostatic repulsion. The permselectivity is pH-dependent and can be modulated by adjusting the Debye screening length within the nanopores of the opal by changing the ionic strength of the contacting solution.  相似文献   
96.
Spatially and temporally resolved energy-dispersive EXAFS (EDE) has been utilised in situ to study supported Rh nanoparticles during CO oxidation by O2 under plug-flow conditions. Three distinct phases of Rh supported upon Al2O3 were identified by using EDE at the Rh K-edge during CO oxidation. Their presence and interconversion are related to the efficiency of the catalysts in oxidising CO to CO2. A metallic phase is only found at higher temperatures (>450 K) and CO fractions (CO/O2 > 1); an oxidic phase resembling Rh2O3 dominates the active catalyst under oxygen-rich conditions. Below about 573 K, and in CO-rich environments, high proportions of isolated Rh(I)(CO)2 species are found to co-exist with metallic Rh nanoparticles. Alongside these discrete situations a large proportion of the active phase space comprises small Rh cores surrounded by layers of active oxide. Confinement of Rh to nanoscale domains induces structural lability that influences catalytic behaviour. For CO oxidation over Rh/Al2O3 there are two redox phase equilibria alongside the chemistry of CO and O adsorbed upon extended Rh surfaces.  相似文献   
97.
A study of the interaction of phosphorylated organic compounds with the stainless components of a liquid chromatography-electrospray ionisation-mass spectrometry system (LC-ESI-MS) was carried out to disclose a (forgotten?) likely pitfall in the LC-ESI-MS analysis of phosphorylated compounds. The retention behaviour of some representative compounds of different important classes of phosphorylated biomolecules such as nucleotides, oligonucleotides, phosphopeptides, phospholipids and phosphorylated sugars was investigated during their passage through the injector and the stainless steel electrospray capillary. It became clear that the stainless steel components within the LC-ESI-MS setup were able to retain and trap phosphorylated compounds when these compounds were introduced under acidic conditions (0.1% acetic acid). Their release from these stainless steel parts was accomplished by applying an extreme basic mobile phase (25-50% ammonium hydroxide, ca. pH 12). From the data collected one could conclude that the availability of a primary phosphate group appeared imperative but was not always sufficient to realise adsorption on a stainless surface. Furthermore, the number of phosphate moieties seemed to enhance the adsorption properties of the molecules and hence roughly correlated with the analyte fraction lost. Corrosion of the inner surface caused by the mobile phase and the electrospray process was found to be an important factor in the course of these adsorption phenomena.  相似文献   
98.
Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2?) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2? in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2? in white (WM) (rR2 = [0.55–0.79], rR2? = [0.47–0.71]) and gray (GM) matter (rR2 = [0.26–0.59], rR2? = [0.39–0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters Ktrans and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2′, a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation.  相似文献   
99.
When materials are reduced to the nanoscale, their structure and reactivity can deviate greatly from the bulk or extended surface case. Using the archetypal example of supported Pt nanoparticles (ca. 2 nm diameter, 1 wt % Pt on Al(2)O(3)) catalyzing CO oxidation to CO(2) during cyclic redox operation, we show that high energy X-ray total scattering, used with subsecond time resolution, can yield detailed, valuable insights into the dynamic behavior of nanoscale systems. This approach reveals how these nanoparticles respond to their environment and the nature of active sites being formed and consumed within the catalytic process. Specific insight is gained into the structure of the highly active Pt surface oxide that formed on the nanoparticles during catalysis.  相似文献   
100.
The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 106 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号