首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656205篇
  免费   5447篇
  国内免费   1771篇
化学   334216篇
晶体学   9657篇
力学   32362篇
综合类   22篇
数学   85519篇
物理学   201647篇
  2021年   5841篇
  2020年   6365篇
  2019年   7212篇
  2018年   9601篇
  2017年   9688篇
  2016年   13586篇
  2015年   7613篇
  2014年   12461篇
  2013年   29344篇
  2012年   22680篇
  2011年   27118篇
  2010年   19884篇
  2009年   19672篇
  2008年   25438篇
  2007年   25391篇
  2006年   23246篇
  2005年   20839篇
  2004年   19458篇
  2003年   17513篇
  2002年   17250篇
  2001年   18502篇
  2000年   14407篇
  1999年   11147篇
  1998年   9524篇
  1997年   9375篇
  1996年   8786篇
  1995年   7982篇
  1994年   7873篇
  1993年   7605篇
  1992年   8166篇
  1991年   8589篇
  1990年   8236篇
  1989年   8016篇
  1988年   7922篇
  1987年   7726篇
  1986年   7341篇
  1985年   9373篇
  1984年   9966篇
  1983年   8334篇
  1982年   8726篇
  1981年   8317篇
  1980年   7890篇
  1979年   8357篇
  1978年   8712篇
  1977年   8563篇
  1976年   8591篇
  1975年   8160篇
  1974年   7984篇
  1973年   8380篇
  1972年   5962篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Settling of a large solid particle in bioconvection flow caused by gyrotactic microorganisms is investigated. The particle is released from the top of the bioconvection chamber; its settling pattern depends on whether it is released in the centre of the bioconvection plume or at its periphery. The Chimera method is utilized; a subgrid is generated around a moving particle. The method suggested by Liu and Wang (Comput. Fluid 2004; 33 :223–255) is further developed to account for the presence of a moving boundary in the streamfunction‐vorticity formulation using the finite‐difference method. A number of cases for different release positions of the particle are computed. It is demonstrated that bioconvection can either accelerate or decelerate settling of the particle depending on the initial position of the particle relative to the plume centre. It is also shown that the particle impacts bioconvection plume by changing its shape and location in the chamber. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
72.
73.
We study initial boundary value problems for linear scalar evolutionpartial differential equations, with spatial derivatives ofarbitrary order, posed on the domain {t > 0, 0 < x <L}. We show that the solution can be expressed as an integralin the complex k-plane. This integral is defined in terms ofan x-transform of the initial condition and a t-transform ofthe boundary conditions. The derivation of this integral representationrelies on the analysis of the global relation, which is an algebraicrelation defined in the complex k-plane coupling all boundaryvalues of the solution. For particular cases, such as the case of periodic boundaryconditions, or the case of boundary value problems for even-orderPDEs, it is possible to obtain directly from the global relationan alternative representation for the solution, in the formof an infinite series. We stress, however, that there existinitial boundary value problems for which the only representationis an integral which cannot be written as an infinite series.An example of such a problem is provided by the linearized versionof the KdV equation. Similarly, in general the solution of odd-orderlinear initial boundary value problems on a finite intervalcannot be expressed in terms of an infinite series.  相似文献   
74.
75.
Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two‐dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non‐ oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non‐oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
76.
Large eddy simulations of two basic configurations (decay of isotropic turbulence, and the academic plane channel flow) with heat transfer have been performed comparing several convection numerical schemes, in order to discuss their ability to evaluate temperature fluctuations properly. Results are compared with the available incompressible heat transfer direct numerical simulation data. It is shown that the use of regularizing schemes (such as high order upwind type schemes) for the temperature transport equation in combination with centered schemes for momentum transport equation gives better results than the use of centred schemes for both equations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
77.
A high‐order accurate, finite‐difference method for the numerical solution of incompressible flows is presented. This method is based on the artificial compressibility formulation of the incompressible Navier–Stokes equations. Fourth‐ or sixth‐order accurate discretizations of the metric terms and the convective fluxes are obtained using compact, centred schemes. The viscous terms are also discretized using fourth‐order accurate, centred finite differences. Implicit time marching is performed for both steady‐state and time‐accurate numerical solutions. High‐order, spectral‐type, low‐pass, compact filters are used to regularize the numerical solution and remove spurious modes arising from unresolved scales, non‐linearities, and inaccuracies in the application of boundary conditions. The accuracy and efficiency of the proposed method is demonstrated for test problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
78.
79.
80.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号