首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   149篇
  国内免费   158篇
化学   358篇
晶体学   13篇
力学   52篇
综合类   25篇
数学   90篇
物理学   319篇
  2024年   2篇
  2023年   8篇
  2022年   19篇
  2021年   21篇
  2020年   14篇
  2019年   26篇
  2018年   10篇
  2017年   17篇
  2016年   23篇
  2015年   8篇
  2014年   39篇
  2013年   34篇
  2012年   34篇
  2011年   22篇
  2010年   30篇
  2009年   31篇
  2008年   35篇
  2007年   21篇
  2006年   21篇
  2005年   20篇
  2004年   28篇
  2003年   37篇
  2002年   34篇
  2001年   34篇
  2000年   33篇
  1999年   25篇
  1998年   25篇
  1997年   18篇
  1996年   20篇
  1995年   27篇
  1994年   13篇
  1993年   14篇
  1992年   16篇
  1991年   28篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   9篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   10篇
  1982年   3篇
  1980年   5篇
  1978年   1篇
  1973年   2篇
  1963年   1篇
  1960年   1篇
排序方式: 共有857条查询结果,搜索用时 0 毫秒
21.
在密度泛函理论的B3PW91水平上, 优化计算了AlmNin (m+n=2–4)团簇的几何结构、团簇基态的结合能、最高占据轨道与最低空轨道之间的能级间隙和可能的分离能. 结果表明, 随着团簇尺寸的增加, 能级间隙呈现奇偶振荡规律; Al2Ni2团簇具有最高的结合能, 易分离成Ni原子和Al2Ni团簇; 含Al的合金团簇最易先分离出一个Al原子, 而含Ni的合金团簇没有这种趋势.  相似文献   
22.
以毒死蜱为模板分子,乙二醇二甲基丙烯酸酯为交联剂,对巯基苯胺为功能单体,Gr/CH3NH3PbI3纳米复合材料为载体,构建了MIP/ITO/Gr/CH3NH3PbI3光电化学传感器.采用电流-时间法对传感器制备条件进行优化.在最佳实验条件下,峰电流与毒死蜱浓度在1.0 ~ 200 nmol/L范围内呈线性关系,相关系数...  相似文献   
23.
PU树脂制备过程中,在不加任何助剂的前提下有些树脂表现为清澈透明,但有些树脂则出现泛蓝光的现象。虽然无论清澈透明或者泛蓝光的PU树脂对于合成革的物性没有产生影响,但此现象一直困扰着PU生产与研究者。本文通过以不同固含量的PU树脂为起点,研究其对泛蓝光现象的影响。实验结果显示,当PU树脂固含量高于40%时容易出现泛蓝光现象,同时对蓝光产生的原因做出了相应的解释。  相似文献   
24.
随着全球人为温室气体排放量(主要是甲烷和二氧化碳)的增加,全球变暖的趋势逐渐增加,因此,迫切需要通过各种技术来捕获和利用这些温室气体.甲烷干气重整反应(DRM)可以有效地将甲烷和二氧化碳这两种资源丰富、价格低廉的温室气体转化为高附加值化学品,减少它们向大气排放.尽管DRM工艺的应用具有许多优势,但是反应期间碳沉积和活性组分的烧结是阻碍其工业应用的两个主要原因.这些碳沉积物可能覆盖活性中心或阻塞催化剂的孔道,从而导致催化剂活性降低.镍基催化剂因其价格低廉、初始活性高和资源丰富而得到广泛的应用.但应用于DRM反应的Ni基催化剂在反应中容易烧结和积碳,导致催化剂迅速失活.为解决上述问题,本文从三功能策略角度出发,即SiO2壳层的限域作用和Ni-Ce之间的协同作用以及CeO2的消除积碳作用,采用原位一锅法设计合成了一种限域型Ni-CeO2核壳结构催化剂(Ni-CeO2@SiO2).通过X射线衍射、透射电子显微镜、能量色散X射线光谱、N2吸附/脱附、氢气程序升温还原和脱附、氧气程序升温脱附、拉曼光谱、热重分析和原位漫反射红外傅里叶变换光谱测试对催化剂进行了系统的表征,来揭示催化剂的理化性质和反应机理.催化剂应用于甲烷干气重整反应结果表明,在温度区间为550~800℃时,与传统浸渍法合成的催化剂相比,Ni-CeO2@SiO2催化剂具有更高的活性.高温800℃下的稳定性测试结果显示,传统浸渍法合成的催化剂在反应20 h后就出现了大量的积碳且活性下降明显;而Ni-CeO2@SiO2催化剂在800℃下反应100 h后未检测到积碳,并且催化剂中的Ni纳米颗粒的平均粒径从5.01 nm仅增长到5.77 nm,表现出很好的高温抗积碳和耐烧结性能.值得注意的是,Ni-CeO2@SiO2催化剂在低温600℃(形成碳沉积的最可能温度区域)下反应20h后也未检测到积碳的形成,表现出催化剂良好的低温稳定性和抗积碳性能.这可能归因于对Ni-CeO2@SiO2催化剂的三功能作用,即多孔二氧化硅壳层的限域作用、Ni与CeO2之间强的金属-金属氧化物相互作用以及具有丰富活性氧物种CeO2的消除积碳的作用.通过原位漫反射红外傅里叶变换光谱测试来探究反应机理.结果 表明,DRM反应在Ni-CeO2@SiO2催化剂上遵循L-H机理,添加CeO2可以消除碳沉积并促进CO2活化.该三功能策略为设计其他应用于DRM的高性能催化剂提供了指导,有望加快该工艺的工业化.  相似文献   
25.
为获得适用于柱面带壳装药的冲击起爆修正判据,以Picatinny工程判据为基础加入修正项进行修正。采用AUTODYN-3D软件对破片撞击柱面带钢壳的B炸药进行数值计算,获得了破片入射角、装药曲率半径对炸药临界起爆速度的影响规律;通过拟合得到修正项表达式,建立了考虑破片入射角、柱壳装药形状函数的炸药起爆临界速度修正判据。判据计算值与实验数据和数值计算值吻合较好,该判据能较好的预测柱形带壳装药的冲击起爆条件。  相似文献   
26.
随着纳米科学的迅速发展,越来越多的微粒材料被设计和制备出来,并应用于生物医学领域,取得了令人瞩目的进展和成就。近年来,我们课题组发展了一系列具备可控表面化学与结构、特定刺激响应性能和可控装载与释放性能的微粒材料,尤其是基于层层自组装的中空微胶囊。同时,我们也致力于研究微粒材料与细胞的相互作用,阐明其物理化学性质对细胞内吞和细胞功能的影响。通过这些研究,我们希望进一步建立功能性微粒材料的生物学功能优化的规律,推动其在生物医学领域的应用。  相似文献   
27.
通过对PdO活性组分在单斜与四方型氧化锆载体上的热化学性质和催化活性进行比较性的研究显示, 单斜型ZrO2的表面原子能够满足与PdO的结构适应性匹配条件, 它可以通过界面原子的取向附生作用对表面PdO物种聚集形态进行调控, 从而促进PdO组分在单位载体表面上的分散. 此外, 升降温循环过程的DTG分析还表明, 单斜载体模板在反复的氧化还原循环中逐渐将结晶型PdO加工成取向附生型PdO, 不断改善PdO物种的氧迁移性质, 促进了热还原钯物种在高温区的氧化再生. 这两种载体效应有效地抑制了甲烷燃烧反应在高温区的活性振荡, 增加了燃烧的稳定性与催化剂的反应耐受性. 四方ZrO2晶相在载体内的掺杂将导致上述的载体效应受到明显抑制.  相似文献   
28.
本文叙述了应用电感耦合等离子体发射光谱法同时定量测定硅酸盐岩石中主要、次要组分:Si、Al、Ca、Mg、Fe、Mn、Ti、P、Sr、Ba、Cu、Zn、V、Zr、Cr、Y、Yb等十七个元素的分析过程、元素间的干扰效应及其校正方法。本方法使用岛津ICPQ-100型等离子体光量计,样品溶液不经去溶,在同一份溶液中同时测定上述元素,获得了较好的准确度和精密度。特别是高含量硅(30—80%)测定的相对标准偏差小于0.5%。  相似文献   
29.
研究了一组邻硝基乙酰苯胺衍生物的X射线光电子能谱(XPS).观察到硝基的N1s光电子谱有明显分裂,可认为是N1s振起伴峰的反映,而且苯环上的取代基对该振起伴峰强度有影响,按照Pignataro等关于振起伴峰与主峰的能量分离以及分子内电荷转移有关的观点,计算了振起伴峰与主峰的面积比.结果表明,峰间距与面积比的趋势一致.因此二者都可作为分子内电荷转移的粗略估计.  相似文献   
30.
制备了一种胶原-磺化羧甲基壳聚糖/硅橡胶皮肤再生材料,并以小型猪为模型,考察了其对烫伤全层皮肤缺损的修复性能.首先合成了磺化羧甲基壳聚糖,并对其结构进行了表征.制备了胶原-磺化羧甲基壳聚糖多孔支架,采用扫描电子显微镜(SEM)研究了磺化羧甲基壳聚糖含量对支架微结构的影响.随着磺化羧甲基壳聚糖含量的增大,胶原-磺化羧甲基壳聚糖支架从纤维结构向片状结构转化,且支架的孔径相对变大.采用体外成纤维细胞培养实验证明胶原-磺化羧甲基壳聚糖支架无明显细胞毒性.进一步将胶原-磺化羧甲基壳聚糖支架与硅橡胶膜复合,构建具有双层结构的皮肤再生材料.以小型猪为模型,评价了其对深度烫伤创面的修复性能.大体观察和组织学分析结果显示,胶原-磺化羧甲基壳聚糖/硅橡胶皮肤再生材料具有更快的血管化性能,且经该材料处理的创面能有效支持薄自体皮片的移植成活,实现深度烫伤创面的全层修复.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号