排序方式: 共有74条查询结果,搜索用时 15 毫秒
11.
YSZ电解质薄膜的制备方法 总被引:2,自引:0,他引:2
固体氧化物燃料电池(solid oxide fuel cells, SOFC)和固体氧化物电解池(solid oxide electrolytic cells, SOEC)制备的关键技术之一是在保证致密性的前提下将Y2O3稳定ZrO2(yttria-stabled zirconia, YSZ)电解质薄膜化.本文将YSZ电解质薄膜制备方法归类为陶瓷粉末法、化学法和物理法,综述了近年来这些方法的研究进展.通过对每种方法技术特点的说明和实例举证,探讨了这些方法的优、缺点和适用场合.最后,通过分析和比较,对YSZ薄膜化方法未来的发展进行了展望. 相似文献
12.
从菲涅尔-基尔霍夫衍射积分公式出发,运用边界元法数值计算了平凹腔平面镜均匀反射率时倾斜和未倾斜情况下基模的场强分布、相位分布和本征值,同时与高斯反射率平面镜在腔镜倾斜时的情况做了比较。研究表明,腔镜倾斜使激光场模式分布沿发生倾斜的方向向镜边缘偏移,而且在腔镜倾斜较严重时模式分布发生畸变,不再是对称的高斯分布,基模本征值随倾斜角增大而变小,光束远场分布变差。同等条件下,高斯反射率平凹腔腔镜倾斜对谐振腔引起的模畸变小于均匀反射率平凹腔,且基模光场及本征值随镜倾斜的变化关系稍不同于均匀反射率平凹腔。 相似文献
13.
热化学循环分解水制氢是近年来国际上核能制氢计划的研究热点课题,除美国通用原子能公司(GA)发明的碘硫(IS)循环和东京大学发明的UT-3循环外,作为最简单的热化学循环制氢体系,氧化物体系热化学分解水制氢近年来受到了国际上的广泛关注.采用化学共沉淀法制备了具有尖晶石结构的铁酸盐,经高温煅烧使其形成了初始分解温度仅为839Y3的高活性氧缺位铁酸铜(CuFe2O4-δ),设计并开发了两步骤热化学循环制氢反应试验装置.利用XRD,DTA—TG,AAS和GC等分析方法和实验技术,对制备出的氧缺位铁酸铜样品的结构、性质、化学组成及氧缺位程度占值进行了详细的研究,并对CuFe2O4-δ分解水制氢过程和循环性能进行了探讨和研究. 相似文献
14.
15.
16.
基于高分辨电感耦合等离子体质谱法(HR-ICP-MS)的质谱干扰消除技术,对镍基单晶高温合金中36种痕量元素检测的质谱条件、基体干扰、质谱干扰与同位素选择进行了研究。取样品0.100 0 g,用体积比为3∶1的盐酸-硝酸混合酸10 mL、氢氟酸1 mL溶解,用水定容至250 mL。通过复杂基体质谱干扰计算判定、共存元素干扰消除,确定了待测元素的同位素和分辨模式,将镍基单晶高温合金中痕量元素准确测定的元素种类确定为36种。采用标准加入法进行定量分析,36种痕量元素的检出限(3s)为0.004~6.000μg·L-1。方法用于分析国际标准物质,得到的测定值与认定值基本一致。方法用于镍基单晶高温合金样品分析,36种痕量元素的检出量为0.000 001 0%~0.018%。 相似文献
17.
CeO2是三效催化剂(简称TWC)中被广泛应用的涂层材料[1],其优良的储放氧能力(OSC)可以扩大TWC的工作窗口,并可以在与γ-Al2O3的相互作用中提高Al2O3的高温稳定性[2]。在高温下,CeO2会因晶粒迅速长大而失去储放氧能力。为了提高CeO2的高温抗烧结能力,以及进一步提高其氧化还原能力,大部分研究者选择了在CeO2晶格中掺入其他离子的方法,如:Zr4 、Pr3 、La3 等[3 ̄5],这些离子在CeO2晶格中引入了晶格缺陷,不但稳定了结构,而且提高了氧传输能力。SiO2具有很高的化学稳定性、高比表面及高热稳定性,是载体的理想选择。研究表明,CeO2负载… 相似文献
18.
19.
放射性废物,尤其是高放废物的妥善处理处置是各国政府和民众非常重视的一个问题,也是影响核能可持续发展的关键因素之一。高放废液是后处理Purex流程排放出来的废液,它集中了乏燃料中95%以上的放射性,其中α放射性核素的存在决定了需要将其处置在地质处置库中与生物圈隔离10万年以上。“分离-嬗变”方法处理高放废液可以有效缩减地质处置库与生物圈隔离的时限。TRPO具有良好的物性、辐照稳定性和对三价、四价和六价锕系元素良好的萃取选择性。基于此,我国提出了从高放废液中分离锕系元素的TRPO流程。多次热验证实验和中间规模冷台架实验结果证明TRPO流程处理我国生产堆高放废液,可完全实现高放废液的非α化。TRPO流程具有我国自主知识产权,在我国生产堆高放废液和动力堆高放废液处理中都具有良好的应有前景。 相似文献
20.
高温共电解(high temperature co-electrolysis,HTCE)H2O和CO2技术是一种很有前景的清洁燃料制备和CO2减排新技术。该技术可利用可再生能源或核能提供的电能和高温热,通过高温固体氧化物电解池(solid oxide electrolysis cell,SOEC)将H2O和CO2共电解生产合成气(H2+CO),再将制备的合成气用于生产各种液态碳氢燃料。本文详细介绍了利用高温固体氧化物电解池共电解H2O和CO2制备合成燃料的基本原理、发展历程和目前世界各国的研究进展,对该技术的优势和特点进行了分析,并对该技术在关键材料、反应机理等方面存在的问题进行了总结和讨论,最后对其在新能源技术领域的应用前景作了展望。 相似文献