首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   45篇
  国内免费   84篇
化学   536篇
力学   14篇
综合类   5篇
数学   20篇
物理学   59篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   31篇
  2013年   48篇
  2012年   44篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   20篇
  2007年   22篇
  2006年   15篇
  2005年   18篇
  2004年   28篇
  2003年   35篇
  2002年   86篇
  2001年   194篇
  2000年   32篇
  1999年   20篇
  1998年   10篇
  1997年   10篇
  1996年   1篇
  1995年   3篇
排序方式: 共有634条查询结果,搜索用时 125 毫秒
631.
使用密度泛函理论B3LYP方法和二阶微扰理论MP2方法对由1-甲基尿嘧啶与N-甲基乙酰胺所形成的氢键复合物中的氢键强度进行了理论研究, 探讨了不同取代基取代氢键受体分子1-甲基尿嘧啶中的氢原子对氢键强度的影响和氢键的协同性. 研究表明: 供电子取代基使N-H…O=C氢键键长r(H…O)缩短, 氢键强度增强; 吸电子取代基使N-H…O=C氢键键长r(H…O)伸长, 氢键强度减弱. 自然键轨道(NBO)分析表明: 供电子基团使参与形成氢键的氢原子的正电荷增加, 使氧原子的负电荷增加, 使质子供体和受体分子间的电荷转移量增多; 吸电子基团则相反. 供电子基团使N-H…O=C氢键中氧原子的孤对电子轨道n(O)对N-H的反键轨道σ*(N-H)的二阶相互作用稳定化能增强, 吸电子基团使这种二阶相互作用稳定化能减弱. 取代基对与其相近的N-H…O=C氢键影响更大.  相似文献   
632.
以V2O5、NH4H2PO4、LiOH、柠檬酸、三嵌段聚合物表面活性剂P123为原料, 用流变相(RPR)法制备了Li3V2(PO4)3/C正极材料. 用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等方法表征, 结果表明: 材料为单一纯相的单斜晶体结构, 颗粒均匀并呈现珊瑚结构; 恒流充放电, 循环伏安(CV)及电化学交流阻抗(EIS)等电化学性能测试表明, 采用P123 辅助合成材料电化学性能明显优于未采用P123 辅助合成材料. 3.0-4.3 V放电区间, 0.1C充放电下P123 辅助合成Li3V2(PO4)3/C材料首次放电比容量为129.8 mAh·g-1, 经过50 次循环后容量只衰减0.9%; 倍率性能及循环性能优异, 1C、10C、25C的首次放电比容量分别为128.2、121.3、109.1 mAh·g-1, 50次循环后容量保持率分别为99.1%, 96.9%, 90.7%. 这归因于三嵌段聚合物P123 作为分散剂的同时也作为有机碳源在颗粒表面及间隙形成碳网络, 有利于材料导电率的改善, 降低了其电荷转移阻抗, 减小了电极充放电过程的极化现象.  相似文献   
633.
特殊的单原子层二维sp2碳结构给石墨烯带来众多独特的性能和潜在的应用. 然而, 单层石墨烯容易聚集并会逐渐重新石墨化, 这成为其应用的一个重要障碍. 本文报道了一种新策略来解决这个问题, 即通过在石墨烯表面引入sp2碳纳米结构作为永久的波纹来阻止石墨烯的聚集和石墨化, 并使之在溶液中易于分散和稳定. 和其他功能化方法不同, 该方法没有引入杂原子, 不破坏石墨烯的结构和功能. 制得的石墨烯具有优异的导电性能(~65000 S·m-1), 并具有较好的溶液稳定性.  相似文献   
634.
The authors consider the simplest quantum mechanics model of solids,the tight binding model,and prove that in the continuum limit,the energy of tight binding model converges to that of the continuum elasticity model obtained using Cauchy-Born rule.The technique in this paper is based mainly on spectral perturbation theory for large matrices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号