首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   29篇
化学   31篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2008年   1篇
  2001年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
21.
采用氨蒸发诱导法成功制备出纳米结构LiNi1/3Co1/3Mn1/3O2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、高分辨率透射电镜(HRTEM)、能量分散谱(EDS)和比表面测试等表征手段及恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能. 研究表明该方法制备出的材料具有良好的α-NaFeO2层状结构,阳离子混排程度低. 纳米片交错堆积而成核桃仁状形貌,片与片之间形成许多纳米孔,而且纳米片的侧面属于{010}活性面,能够提供较多的锂离子的脱嵌通道. 在室温下及3.0-4.6 V充放电范围内,该材料在电流密度为0.5C、1C、3C、5C和10C时放电比容量分别为172.90、153.95、147.09、142.16 和131.23mAh·g-1. 说明其具有优异的电化学性能,非常有潜力用于动力汽车等高功率密度锂离子电池中.  相似文献   
22.
采用碳酸盐共沉淀法通过调节NH_3·H_2O用量来实现可控制备超高倍率纳米结构LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。NH_3·H_2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH_3·H_2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品晶体层状结构最完善、Li~+/Ni~(2+)阳离子混排程度最低。电化学性能测试结果也证实了nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 m Ah·g~(-1),容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g~(-1))的超高倍率下,放电比容量还能达到56 m Ah·g~(-1),具有应用于高功率型锂离子电池的前景。此NH_3·H_2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。  相似文献   
23.
采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。  相似文献   
24.
郑卓  吴振国  向伟  郭孝东 《化学学报》2017,75(5):501-507
采用碳酸盐共沉淀-高温固相法制备得到了颗粒平均尺寸约5 μm振实密度为2.1 g·cm-3的均匀微球形高镍LiNi0.5Co0.2Mn0.3O2材料.X射线衍射(XRD)分析和透射电镜(TEM)结果表明这种微球状LiNi0.5Co0.2Mn0.3O2材料具有完善的层状α-NaFeO2结构,过渡金属层原子呈[√3×√3]R30°排布.电化学性能测试结果证实了该材料具有优异的循环稳定性和高倍率性能.具体而言,在2.7~4.3 V,1C下循环100次后的放电比容量为150 mAh·g-1,容量保持率为94.6%,在30C的超高倍率下,放电比容量还能达到96 mAh·g-1.同时,该材料的储能能力也非常突出,在0.1C时比能量密度为687.83 Wh·kg-1(体积能量密度为1444.45 Wh·L-1),在30C时仍达335.27 Wh·kg-1(体积能量密度为704.07 Wh·L-1),非常有潜力应用于商业化高能量密度锂离子电池.  相似文献   
25.
以三价铁盐为铁源,采用多元醇还原法在低温下制备出了具有不同长径比的棒状LiFePO4材料. 通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、交流阻抗谱(EIS)和恒电流充放电测试等手段分析了不同回流反应时间下制备出的前驱体和最终的LiFePO4/C 样品. 结果表明:回流反应时间对LiFePO4的形貌和特性有明显的影响. 通过把回流反应时间从4 h延长至16 h,材料的形貌由不规则的短棒状颗粒变为规则的长棒状颗粒,且棒的直径明显变小. 当回流反应时间为10 h 时,样品复合了多种形貌,有利于电子的传输,在低倍率下具有优秀的性能,0.1C放电比容量为163 mAh·g-1;当回流反应时间为16 h 时,样品具有最大的长径比,有利于锂离子的扩散,在高倍率下具有良好的性能,1C、3C、5C、10C、20C倍率下放电比容量分别为135、125、118、110、98 mAh·g-1,循环性能良好,几乎无衰减.  相似文献   
26.
前驱体配料温度对水热法制备LiFePO4的影响   总被引:1,自引:0,他引:1  
研究了配料温度对水热法制备磷酸铁锂的影响.通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安(CV)以及元素分析等手段分析了不同温度下制备的前驱体和最终的LiFePO4样品,其结果表明配料温度对磷酸铁锂前驱体颜色和特性有明显影响.通过仔细控制该温度可以制得高纯Li3PO4中间体并抑制前驱体中Fe(OH)3的形成.有利于进一步获得结晶良好不含Fe3+的LiFePO4样品,显著提高了LiFePO4材料的放电比容量.当配料温度为30℃时获得的样品,0.1C倍率下放电比容量达到156 mAh·g-1,0.5C倍率下放电比容量为151 mAh·g-1,10C倍率下放电比容量为127 mAh·g-1,循环20次容量保持率达99%.  相似文献   
27.
采用了一种真空辅助沉淀法制备Fe3(PO4)2·8H2O,并以此进一步合成粒径尺寸在400 nm左右LiFePO4颗粒.研究了Fe3(PO4)2·8H2O对于磷酸铁锂的形貌、结构、电化学性能的影响.X射线衍射(XRD)结果表明,真空辅助制备的Fe3(PO4)2·8H2O具有高纯度,以此制备的LiFePO4具有高结晶度和纯度.扫描电子显微镜(SEM)结果表明,真空辅助制备的Fe3(PO4)2·8H2O具有未完全发育的颗粒,以此制备的LiFePO4均匀无硬团聚.透射电子显微镜(TEM)结果显示真空辅助制备的LiFePO4包覆一层均匀的碳.真空制备的LiFePO4显示了优异的电化学性能,在1C、10C、20C倍率下的容量分别为140、113、100 mAh·g-1.真空制备的LiFePO4的循环伏安曲线显示了小的极化电压和尖锐的氧化峰.充放电平台曲线表明真空对LiFePO4高倍率性能起到重要作用.电化学阻抗谱(EIS)计算结果显示,真空和非真空制备的LiFePO4的锂离子扩散系数分别为1.42×10-13和4.22×10-14cm2·s-1,说明真空辅助能够提高LiFePO4的扩散系数.  相似文献   
28.
分别以四水磷酸铁(Fe PO4·4H2O)和二水草酸亚铁(FeC_2O_4·2 H_2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe_(0.5)Co_(0.5)PO_4固溶体材料(LiFe_(0.5)Co_(0.5)PO_4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC_2O_4·2 H_2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 m A·g~(-1)),放电比容量为137.5m Ah·g~(-1),在10C仍具有57.6 m Ah·g~(-1)的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。  相似文献   
29.
使用Nb2O5和Nb(OC6H5)5为铌源对LiFePO4/C中的锂位和铁位分别掺杂,采用碳热还原法合成掺杂Nb的磷酸铁锂系列材料。运用X射线衍射仪、扫描电镜、循环伏安、交流阻抗谱和恒电流充放电测试等对材料进行表征。结果表明:相比掺杂位置,铌源对材料的颗粒形貌和粒径分布影响更大,而颗粒大小对材料的电化学性能,尤其是大倍率性能的提高有重要作用;掺杂在Li位的Nb元素比在Fe位能更好的稳定晶体结构,从而有利于提高循环性能。  相似文献   
30.
为解决LiNi0.5Co0.2Mn0.3O2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1% (x)时,可以降低LiNi0.5Co0.2Mn0.3O2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25 ℃、3.0-4.3 V下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55 ℃下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi0.5Co0.2Mn0.3O2的高温循环性能有积极作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号