排序方式: 共有47条查询结果,搜索用时 9 毫秒
11.
纳米银在细菌纤维素凝胶膜中的原位合成及性能表征 总被引:1,自引:0,他引:1
在细菌纤维素纳米纤维网络结构中采用吐伦试剂与含醛基化合物原位反应生成纳米银颗粒, 制备了纳米银/细菌纤维素(n-Ag/BC)复合凝胶膜, 研究了不同反应条件对复合材料的银含量、 化学结构和晶体结构的影响以及n-Ag/BC的微观结构和纳米银在纤维素网络中的存在形态; 探讨了纳米银颗粒在纤维素网络中的形成机理; 采用伤口常见细菌之一金黄色葡萄球菌测试了n-Ag/BC的抑菌性能; 将n-Ag/BC与胎鼠表皮细胞共培养考察了材料的生物相容性. 研究结果表明, 在细菌纤维素纳米网络结构中可生成直径约为几十纳米的单质纳米银粒子; n-Ag/BC的银含量随着吐伦试剂浓度的增加而增加, 同时银含量还取决于含醛基化合物的用量; 原位反应生成纳米银粒子后细菌纤维素的晶型和结晶度没有发生变化; 纳米银颗粒在细菌纤维素纳米网络结构的交叉处生成, 复合材料n-Ag/BC对金黄色葡萄球菌的抑菌率达到99%以上, 不影响细胞的增殖和分化过程, 具有良好的生物相容性, 是一种有广阔应用前景的创伤修复抗感染材料. 相似文献
12.
采用超声法将磁基体Fe3O4和BiVO4复合,制备了易于固液分离的磁性可见光催化剂BiVO4/Fe3O4。采用X射线衍射(XRD)、傅立叶转换红外光谱(FTIR)、紫外-可见漫反射光谱(DRS)、透射电子显微镜(TEM)和磁学性质测量系统(MPMS)对产物进行了表征,并以亚甲基蓝为目标降解物,考察了BiVO4/Fe3O4的可见光催化活性。当BiVO4与Fe3O4质量比为5:1时,BiVO4/Fe3O4的催化活性最高,反应经过5 h,对亚甲基蓝的降解率达到92.0%,而单独使用BiVO4为催化剂,降解率仅为72.5%。这表明Fe3O4不仅起到磁基体的作用,还起到助催化剂的作用。BiVO4/Fe3O4在外加磁场的作用下很容易被分离,撤消外加磁场后,通过搅拌又可重新分散。BiVO4/Fe3O4 3次回收后的降解率仍高于80%。 相似文献
13.
利用密度泛函理论研究了CH3CCl2F与F原子的反应机理.在MPW1K水平下计算了反应物、过渡态和产物的几何构型和频率,并进一步利用内禀反应坐标理论获得了反应的最小能量路径;在G3(MP2)水平下对所有驻点进行了单点能量校正.结果表明,CH3CCl2F与F原子的反应存在两个H迁移反应通道:CH2H′CCl 2F+F→C... 相似文献
14.
用沉淀法在不同pH值下选择性合成了m-和t-LaVO4:Eu3+,合成过程未使用添加剂.用XRD、SEM、PL对样品进行了表征,并与水热法所制备样品的性质进行了比较.结果表明,样品在280 nm紫外光激发下能发射600~620 nm窄带红光,t-LaVO4:Eu3+发光性能远比m-LaVO4:Eu3+优越;pH值是选择性合成t-LaVO4:Eu3+的关键,pH值在6~9范围内,沉淀法与水热法都可得到t-LaVO4:Eu3+,其中pH值为7时样品发光强度最高.样品形貌对光致发光性质有重要影响,沉淀法所得到的t-LaVO4:Eu3+具有规则的形貌,尺寸为亚微米级.延长陈化时间可增强样品发光强度,常温下陈化12 h所得样品的发光强度与180℃水热2 h样品相近.Eu3+掺杂量也是影响样品发光性质重要因素,其最佳掺杂浓度为物质的量分数5%.t-LaVO4:Eu3+在600℃以下结构稳定,煅烧后样品发光强度不会下降. 相似文献
15.
16.
17.
鉴于疲劳累积损伤对FRP-混凝土界面黏结性能有重要影响, 通过统计分析既有FRP-混凝土界面疲劳剪切试验数据, 基于界面黏结疲劳退化双线性模型获得界面残余滑移量、峰值剪应力和初始刚度的疲劳退化规律, 发现随着荷载循环次数的增加, 界面残余滑移量增加, 而峰值剪应力与初始刚度均减小. 并采用基于内聚力模型的有限元法对典型界面疲劳剪切试验进行模拟, 得到了不同荷载循环次数下的界面黏结滑移关系. 模拟所得峰值剪应力、界面断裂能和界面剪切刚度与理论模型接近, 但极限滑移量大于理论模型, 黏结滑移曲线符合典型试验曲线特征. 从有限元模拟结果可知, 疲劳荷载作用会显著降低界面承载力, 但界面破坏特征并未发生显著变化. 相似文献
18.
19.
分别以抗坏血酸、甲酸、亚硫酸氢钠、异丙醇为链转移剂,研究了不同的链转移剂对淀粉―丙烯酸―丙烯酰胺(ST-AA-AM)吸水剂吸水性能的影响。实验结果表明:异丙醇、甲酸、亚硫酸氢钠、抗坏血酸用量分别为单体总质量的0.0375%、0.045%、0.075%、0.01%时,吸水率分别为498.1 g/g、347.9 g/g、549.0 g/g、407.7 g/g。将链转移剂进行复配,亚硫酸氢钠与异丙醇复配的效果最佳,当复合链转移剂用量占单体总质量的0.08%,异丙醇/亚硫酸氢钠(质量比)=1∶2时,吸水剂的吸水率最高,为653.5 g/g。 相似文献
20.