首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   65篇
  国内免费   78篇
化学   122篇
晶体学   10篇
力学   15篇
综合类   3篇
数学   26篇
物理学   128篇
  2024年   5篇
  2023年   21篇
  2022年   29篇
  2021年   19篇
  2020年   10篇
  2019年   19篇
  2018年   17篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   22篇
  2013年   13篇
  2012年   15篇
  2011年   11篇
  2010年   5篇
  2009年   9篇
  2008年   7篇
  2007年   13篇
  2006年   8篇
  2005年   12篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
121.
为了寻找高效的抗肿瘤药物,设计并合成了一系列新型的1,2,3-三氮唑[4,5-d]嘧啶类衍生物,对这些化合物在人类五种癌细胞MGC-803(人胃癌细胞)、MCF-7(人乳腺癌细胞)、EC-109(人食管癌细胞)、PC-3(人前列腺癌细胞)、Hela(人宫颈癌细胞)进行抗肿瘤活性评价,结果显示大部分化合物具有较好的抗肿瘤活性,其中5-(((1H-苯并[d]咪唑-2-基)甲基)硫基)-3-苄基-N-(4-氯苯基)-3H-[1,2,3]-三氮唑[4,5-d]嘧啶-7-胺(11b)和2,2'-((5-(((1H-苯并[d]咪唑-2-基)甲基)硫基)-3-苄基-3H-[1,2,3]-三氮唑[4,5-d]嘧啶-7-基)氮烷二基)双(乙烷-1-醇)(11m)对MGC-803和Hela癌细胞的抗肿瘤活性优于对照品氟尿嘧啶.  相似文献   
122.
硫化镉(CdS)作为一种对可见光响应的窄带隙半导体(带隙宽度约为2.4 eV),具有合适的能带位置,近年来受到越来越多的重视.然而在光催化过程中,光生电子与空穴的快速复合极大地限制了CdS的实际应用,如何提高光生电子-空穴对的分离效率成为研究重点.一维CdS纳米棒(1D CdS NWs)具有较大的长径比,能快速有效地转移光生载流子.零维碳点(0D C-dots)是一种粒径在10 nm以下的新型纳米碳材料,其作为助催化剂能够加快光生载流子传递速率,可提高材料光催化性能.因此,通过C-dots对CdS NWs进行修饰并形成异质结,利用C-dots助催化剂的作用以提升CdS NWs的光催化性能,具有一定的可行性.本文成功构建了一种0D/1D碳点修饰CdS NWs异质结(C-dots/CdS NWs),并考察其光催化性能.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见(UV-Vis)吸收光谱等技术对系列C-dots/CdS NWs样品进行表征.研究发现,C-dots成功负载在CdS NWs的表面并形成异质结.通过测试系列样品在可见光照射下光催化降解罗丹明B(RhB)以及光催化产氢性能发现,C-dots的修饰能够有效增强CdS NWs的光催化性能,其中0.4%C-dots/CdS NWs表现出最佳的光催化降解RhB活性,其经可见光照射60 min即可实现对RhB的完全降解(相同条件下CdS NWs需要180 min).同时自由基捕获实验表明,·O_2~–是降解罗丹明B过程中的主要活性基团.在光催化产氢性能测试中,0.4%C-dots/CdS NWs样品表现出最高的光催化产氢能力,产氢速率可达1633.9μmol g~(-1) h~(-1),比纯CdS的(196.9μmol g~(-1) h~(-1))提高了8.3倍,并且C-dots/CdS NWs具有良好的稳定性.研究发现,在可见光照射下,C-dots/CdS NWs能够产生较强的光生电流,且形成的0D/1D C-dots/CdS NWs异质结具有良好的电子传输能力,实现了C-dots/CdS NWs光生电子与空穴的有效分离,从而增强了光催化性能.  相似文献   
123.
反胶束微乳液法合成纳米SrTiO3研究   总被引:13,自引:0,他引:13  
The precursors of SrTiO3 were prepared by inverse micell microemulsion method. SrTiO3 nano-powders were synthesized by calcining the precursors at 800℃ in air for 4 hours and were characterized by XRD, IR,TG, SEM. The results show that the spherical SrTiO3 nano-particles have narrow distribution with an average size of 40 nm. The surfactants played an important role in controlling shape and size of nano-particles, and combined surfactants were more effective than single surfactant.  相似文献   
124.
采用溶胶-凝胶法在0≤x≤0.5的范围内合成了LiCo0.3-xGaxNi0.7O2的单相.对样品进行了XRD、粒度、比表面积和充放电循环测试.随着掺Ga量的增加,LiCo0.3-xGaxNi0.7O2的放电容量增加.其中LiCo0.25Ga0.05Ni0.7O2在2.8~4.3V和0.2C时的首次放电容量为177.5mA·h/g,经25次充放电循环后无容量衰减.LiCo0.25Ga0.05Ni0.7O2的放电容量随着放电倍率的增大而减小,随着充放电域压上限的增加而增大.但是材料的放电容量在高放电倍率下放电后仍可以完全恢复,且其循环性能与放电域压上限无关.此外,LiCo0.25Ga0.05Ni0.7O2在充放电循环中结构稳定,无相变发生.  相似文献   
125.
剁个稀巴烂     
有时,我们数学课上的讨论很激烈,不知道的人路过我们班,还以为我们打起来了呢!
  比如这次,刘老师让我们研究如何求解这个“房子侧面墙”的面积,大家的意见不一,就又针锋相对地“干”上了。  相似文献   
126.
膜基萃取中钕、钐的传质及界面反应动力学   总被引:2,自引:1,他引:1  
采用自制聚偏氟乙烯中空纤维膜吕,在HEH/EHP煤油体系不,对钕,钐的萃取及界面反应进行了研究。结果表明,膜器中的萃取反应与液-液萃取相同,可视为准一级反应。考察了料液酸度,萃取剂浓度,钕,钐离子浓度与萃取速率的关系,获得了相应的反应级数,根据界面反应动力学,得到了动力学方程,速率常数及钕,钐的分离系数。  相似文献   
127.
TiCl4水解法制备TiO2薄膜的表征及光催化性能   总被引:4,自引:0,他引:4  
TiCl4水解法制备TiO2薄膜的表征及光催化性能;TiCl4水解;TiO2薄膜;光催化;乙酸  相似文献   
128.
弹光调制器利用各向同性晶体受迫振动后产生的双折射效应,对入射的偏振光进行相位调制,在偏振调制及测量方面具有重要应用.弹光调制器的相位延迟是其关键指标参数,实际应用时需对驱动电压与相位延迟进行标定.但传统的弹光调制器定标系统中的元件体积较大,且在使用前完成标定,误差大.为了使弹光调制系统能够实现实时定标,达到精确定标的目...  相似文献   
129.
采用水热法合成了同时具有最高表面能{110}和{001}晶面的锐钛矿TiO2单晶,通过X射线衍射、扫描电镜和激光拉曼光谱等手段对样品的形貌和结构进行了表征,并系统考察了过氧化氢、氢氟酸和反应温度等关键因素对所得样品中{110}面比例的影响,实现了持续提高{110}面比例的过程.在光催化降解亚甲基蓝反应中,具有{110}面的锐钛矿TiO2单晶的光催化活性显著高于无{110}面的单晶.  相似文献   
130.
制备方法对Ni/ZnO催化丙三醇重整-氢解性能的影响   总被引:1,自引:0,他引:1  
采用浸渍法、共沉淀法、水热法和碳微球硬模板法制备了Ni/ZnO催化剂,运用X射线衍射、程序升温还原、透射电子显微镜和氢滴定等手段对其进行了表征,并用于连续固定床反应器中无外加氢气条件下的丙三醇重整-氢解反应.结果表明,在较低空速下,生成的1,2-丙二醇(1,2-PDO)易在Ni分散度较高的催化剂上进一步裂解为乙醇和气相产物;而在较高空速下,其选择性受制于中间产物丙酮醇的加氢.在优化的空速下,Ni分散度越高越有利于1,2-PDO的生成.在Ni分散度最高的Ni/ZnO催化剂上,当丙三醇质量空速为0.84h-1时,1,2-PDO选择性最高,为54.9%,丙三醇转化率为85.4%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号