首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   27篇
  国内免费   64篇
化学   94篇
晶体学   1篇
力学   6篇
综合类   3篇
数学   10篇
物理学   60篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   9篇
  2018年   6篇
  2017年   9篇
  2016年   4篇
  2015年   4篇
  2014年   14篇
  2013年   11篇
  2012年   7篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   10篇
  2002年   13篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
71.
为推广LIBS技术在电解铝行业中的应用,充分发挥其快速、免制样、多元素同时检测的优势。利用激光诱导击穿光谱技术首次对铝电解生产得到的普铝中Fe和Si元素进行测试研究,探索了合理的实验参数条件,在合理的实验条件基础上建立定标曲线并对普铝中Fe和Si元素进行定量分析,结合国标GB/T 7999-2015《铝及铝合金光电直读发射光谱分析方法》考察LIBS测试结果的准确性。以Nd∶YAG脉冲激光器基频1 064 nm激光作为光源激发等离子体,采用多通道光栅光谱仪和ICCD检测器检测、记录光谱信息。首先探测了LIBS光谱谱线,并对谱线进行了归属;综合分析,选取AlⅠ 266.04 nm,SiⅠ 288.15 nm与FeⅠ 259.92 nm作为分析谱线用于定量分析研究。分别研究了触发延迟时间、1Q延迟时间、激光器设定电压对光谱信号强度及信噪比SNR的影响。实验结果表明,触发延迟时间4 μs、1Q延迟时间170~190 μs、激光器设定电压560 V对于Si与Fe元素定量测试分析而言是较为合理的实验参数。根据谱线强度与元素浓度的关系,采用内标法建立了定标曲线,Si与Fe元素定标曲线中相关系数分别为0.919 72与0.952 11,其相对标准偏差(RSD)分别为7.25%与6.34%,说明谱线强度与元素浓度具有良好的线性关系,并基于此模型对12个样品进行了定量测试分析。将测试结果与光电直读发射光谱测得的结果进行比对,结果表明,Fe含量的相对误差绝对值在0~17.3%之间,Si含量相对误差绝对值在0~14.3%之间。依照国标GB/T 7999-2015《铝及铝合金光电直读发射光谱分析方法》中规定的实验室之间分析结果相对误差≤17%的规定,12个测试样品中,试样Si含量测试100%符合允许差要求,试样Fe含量测试91.7%符合允许差要求。该实验结果表明,LIBS技术在电解铝普铝Fe和Si元素检测中具有一定的推广利用价值。  相似文献   
72.
综合训练是高三数学总复习的重要阶段。它是在对学过的知识作了系统的整理,对学过的技能、方法和数学思想作了全面的回顾之后,必须经历的,以综合运用为中心的复习阶段。  相似文献   
73.
随着老年人口数量和比例的不断增长,农村养老难问题日益突出.资金是养老问题的核心.通过对养老资金的预测,可以为政策的制定提供数据参考与决策依据.以黑龙江省为例,在对现行农村养老金制度进行分析的基础上,从人口因素角度对农村养老金需求总量进行预测.建立人口增量模型,依据人口统计数据,引入年龄、性别影响参数,得出人口预测结果.进行养老金需求总量预测,分析并确定了人均养老金标准,进而通过人口预测数据求得养老金需求总量数据.  相似文献   
74.
在室温条件下,利用金刚石对顶砧高压技术,对叠氮化钡进行了原位高压拉曼光谱研究,采用红宝石荧光压标测压,实验的最高压力为10 GPa。实验压力范围内拉曼光谱随压力增加发生了丰富的变化。由于多处拉曼峰的出现和消失并伴随频移有拐点,我们判断叠氮化钡在3 GPa左右时发生了第一次结构相变;随着压力继续增加,在3.5~6.5 GPa范围内拉曼光谱仍不断变化,我们判断可能是相变或者是N=N=N键角和两个键长的非对称压缩导致的;压力继续增加,在8 GPa左右,多处新峰出现和峰的劈裂表明又发生了一次结构相变,并且判断叠氮化钡向着更复杂的结构转变。通过实验可以确定,实验压力范围内N=N=N离子并未被破坏。其实验结果有待高压同步辐射实验的进一步确认。  相似文献   
75.
用2-Fe-C6H4CO2H和(n-Bu)2SnO反应合成了(2-Fe-C6H4CO2)2Sn(n-Su)2(A)和{[2-Fe-C6H4O2)Sn(n-Bu)2]2O}(B)(Fe=(η^5-C5H5)Fe(η^5-C5H4)两种新的二正丁基锡配合物,并用元素分析,红外光谱和核磁共振(1H,13C)谱等方法对配合物的组成和结构进行了表征,由此推测出配合物可能的分子结构,测定了配合物的体外抗癌活性,结果表明配合物对HL-60,HCT,BGC-823,KB等癌细胞均有很好的抑制能力。  相似文献   
76.
采用溶剂热法合成了金属-有机骨架材料NH_2-MIL-53(Al),对活化后的产物进行了粉末X射线衍射(PXRD)、扫描电子显微镜(SEM)及傅里叶变换红外光谱(FTIR)等表征,研究了其在水溶液中对双氯芬酸钠的吸附性能.实验结果表明,NH_2-MIL-53(Al)对双氯芬酸钠具有良好的吸附性能,对5 mg/L的双氯芬酸钠能在40 min内达到吸附平衡,且吸附动力学结果符合准二级动力学曲线,利用Langmuir模型和Freundlich模型拟合吸附等温线,结果表明Langmuir模型拟合效果更好.循环吸附实验结果表明NH_2-MIL-53(Al)具有良好的重复利用性.此外,结合ζ电位测试结果以及p H值对吸附效果的影响,对可能的吸附机理进行了阐述.  相似文献   
77.
以多巴胺(DA)为模板, 多孔阳极氧化铝膜(AAO)为反应载体, 合成了多巴胺分子印迹聚合物纳米管膜(AAO@MIP). 利用扫描电子显微镜对分子印迹纳米管膜的形貌进行了表征, 并用高效液相色谱(HPLC)研究了其对儿茶酚胺类(CLs)药物的吸附性能. 实验结果表明, 在最优萃取条件下, AAO@MIP 纳米管膜对多巴胺、 肾上腺素和去甲肾上腺素具有较高的选择性, 3种儿茶酚胺类药物在0.50~300 μmol/L浓度范围内呈良好的线性关系(r2>0.9970); 检出限(S/N=3)分别为15.5, 12.6和22.5 ng/L. AAO@MIP纳米管膜对多巴胺的最大吸附容量可达82.1 μmol/g; 6次吸附-解吸附重复利用后, 吸附容量仅降低3.3%.AAO@MIP 纳米管膜应用于萃取人体尿液中3种儿茶酚胺, 样品加标回收率为74.0%~100.4%, 相对标准偏差(RSD)为3.6%~6.8%. 该方法简便、 快速、 选择性高, 适用于检测人体尿液中的儿茶酚胺类药物的含量.  相似文献   
78.
采用两步溶液法合成了一种具有高度氧缺位的黑色介孔二氧化钛, 并将其涂覆在隔膜表面作为锂硫电池复合隔膜, 研究了其在锂硫电池中的电化学性能. 结果表明, 氧缺位的黑色介孔二氧化钛材料不仅展现出良好的导电性, 还能加强对多硫化物的物理和化学吸附能力, 从而显著提高锂硫电池的放电比容量(0.1C倍率下首次放电比容量为1257 mA·h/g)和循环性能(循环100次后放电比容量为821 mA·h/g).  相似文献   
79.
本文通过分步还原Ru、Pt前驱体,制备了以Ru为核、PtRu合金为壳的Ru@Pt0.24Ru纳米花电催化剂,其平均直径为16.5±4.0 nm. 利用高分辨电子显微镜、电感耦合等离子体原子发射光谱和X射线光电子能谱等表征了这种电催化剂的结构和组成. 在1 mol·L -1 KOH水溶液中,核壳结构Ru@Pt0.24Ru/C纳米花氢析出反应的过电位为22 mV(@10 mA·cm -2),耐久性测试后过电位增加至30 mV(@10 mA·cm -2),明显优于商业Pt/C电催化剂(初始值:60 mV@10 mA·cm -2,耐久性测试后:85 mV@10mA·cm -2). 显著提高的电化学活性可能源于核壳结构Ru@Pt0.24Ru纳米花的电子效应和几何效应,耐久性的改善可能源于核壳结构Ru@Pt0.24Ru纳米花结构的稳定性.  相似文献   
80.
用模板法合成了1个大环金属铜(II)配合物[CuLCl2]·3H2O (1)和3个大环金属镍(II)配合物[NiLCl2] (2),[NiL](ClO4)2 (3)和[NiLH2](ClO4)4 (4)(L=3,10-二乙基-1,3,5,8,10,12-六氮杂十四烷),通过X-射线衍射单晶结构分析测定了它们的晶体结构。晶体结构显示:配合物12的金属离子与大环配体的4个氮原子及大环平面轴向的2个氯离子以八面体配位方式配位;配合物34的金属离子与大环配体的4个氮原子以平面正方形配位方式配位,配合物4的侧链氮原子的质子化导致侧链结构翻转,使得其侧链与大环平面共面。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号