首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   132篇
  国内免费   209篇
化学   415篇
晶体学   19篇
力学   163篇
综合类   34篇
数学   125篇
物理学   268篇
  2024年   9篇
  2023年   24篇
  2022年   35篇
  2021年   35篇
  2020年   29篇
  2019年   36篇
  2018年   32篇
  2017年   31篇
  2016年   23篇
  2015年   23篇
  2014年   41篇
  2013年   60篇
  2012年   47篇
  2011年   40篇
  2010年   59篇
  2009年   50篇
  2008年   41篇
  2007年   32篇
  2006年   47篇
  2005年   26篇
  2004年   42篇
  2003年   21篇
  2002年   19篇
  2001年   18篇
  2000年   11篇
  1999年   13篇
  1998年   15篇
  1997年   16篇
  1996年   14篇
  1995年   26篇
  1994年   12篇
  1993年   13篇
  1992年   11篇
  1991年   4篇
  1990年   6篇
  1989年   12篇
  1988年   5篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   6篇
  1979年   3篇
  1976年   2篇
  1975年   1篇
  1959年   2篇
  1958年   5篇
  1957年   1篇
  1955年   1篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
71.
在不同含N辅助配体的存在下,将5-甲基-3-吡唑甲酸(H_2MPCA)与相应的铅(Ⅱ)盐反应制得了2个新的配合物:[Pb(HMPCA)_2(H_2O)_2]·H_2O (1)和[Pb(HMPCA)_2(phen)]·H_2O (2)(phen=菲咯啉)。双核配合物1中双核[Pb(μ_2-HMPCA)]_2单元在一对Pb…O次级键的作用下形成了一维链状结构,这些一维链在氢键的作用下进一步自组装成2D超分子结构。而单核化合物2在Pb…O次级键的作用下形成了Pb_2O_2平面,它们在π…π和氢键作用下堆积形成3D超分子结构。考察了配合物1和2的热稳定性、荧光性能。  相似文献   
72.
质子交换膜燃料电池(PEMFC)具有清洁、高效等优点,是一种理想的汽车动力电源.然而,由于其阴极氧还原反应(ORR)速率缓慢,需要使用大量的Pt基催化剂,导致燃料电池成本居高不下,严重制约了PEMFC的商业化发展.将Pt与过渡金属Fe, Co, Ni等形成合金,对表面Pt原子的几何结构和电子结构进行调变,可以有效提高催化剂的活性,实现Pt用量和燃料电池成本的降低.但是目前合金催化剂多采用溶剂热、浸渍-高温退火等制备方法,使用有毒有害试剂和难清洗的表面活性剂,且过程复杂、能耗高,不利于大规模化生产.此外,合金中过渡金属占比高,在燃料电池工况下,大量过渡金属溶解,加速了膜的降解,导致实际PEMFC性能的降低.对此,我们探索了一种简便有效的方法制备高活性、高稳定性的碳载Pt-Co催化剂.在没有添加表面活性剂的情况下,采用硼氢化钠辅助乙二醇还原法合成了具有超小尺寸和均匀分布的Pt-Co纳米颗粒,后续酸刻蚀处理去除不稳定的Co原子,重组双金属纳米颗粒的表面结构形成富Pt壳层,进一步提高了催化剂的活性和稳定性.通过电感耦合等离子体、X射线粉末衍射、透射电子显微镜、高分辨透射电子显微镜、高角环形暗场-扫描透射-元素分布及光电子能谱等物理表征证实了微量Co改性的碳载超细铂合金纳米颗粒的组成和结构.进一步对催化剂进行旋转圆盘电极和单电池测试,结果表明, Pt_(36)Co/C具有明显高于商业化Pt/C的有效电化学活性面积和电池性能.此外,加速衰减测试和衰减前后的电镜图片表明, Pt_(36)Co/C催化剂的稳定性相较于Pt/C亦有所增强.分析Pt-Co/C催化性能提高的原因,主要归于以下三点:(1)催化剂纳米颗粒在载体上分布均匀,且具有超小的粒径尺寸,提供了大量的三相反应界面位点;(2)双金属配体和电子效应的协同作用,降低了氧化物质在催化表面的吸附能力,加速了ORR的电催化动力学;(3)酸蚀刻导致的不稳定Co的溶解及催化剂表面结构的重排,形成了富Pt壳层结构,有利于提高催化剂的稳定性.这种简单有效的合金制备方法可以在电催化领域推广使用.  相似文献   
73.
ZSM-5分子筛在甲醇制烯烃(MTO)过程中的催化性能和反应机理与其孔道中酸位点分布位置紧密相关. 本文证明在水热合成过程中加入适量的钠离子(Na+)可以增加ZSM-5分子筛交叉腔酸位点比例; 从而促进高级甲基苯的生成并加速芳烃循环, 有利于乙烯生成. 相反, 在合成过程中不添加钠离子, 所制备的ZSM-5分子筛直孔道和正弦孔道酸位点比例明显提高, 有利于促进烯烃循环并提高丙烯和C3+烯烃选择性.  相似文献   
74.
水—正己烷—甲醇体系的液液平衡研究   总被引:3,自引:0,他引:3  
随着国民经济的发展 ,汽油、柴油等发动机燃料的供求关系会日趋紧张 ,寻求代用燃料是今后燃料工业发展的必然趋势 ,而以甲醇、乙醇等作为部分代用燃料成分是今后的一个重要方向[1] 。由于传统的甲醇合成工艺受到传热、传质和化学平衡的限制 ,原料及能源的利用率有待于进一步提高。钟炳等人根据超临界相反应特点 ,向体系中加入适宜溶剂如正己烷 ,在超临界条件下合成甲醇 ,同时克服了现有过程存在的热力学限制和传热限制 ,并将CO单程转化率提高到 90 %以上[2 ] 。但是 ,正己烷的加入给合成甲醇过程带来了产物分离和溶剂回收问题。反应器流出…  相似文献   
75.
以八水合氢氧化钡和α-钛酸为原料,在相对低的焙烧温度下,制备出近似球形、亚微米级的钛酸钡。通过XRD、SEM、Raman和FTIR等手段对钛酸钡样品进行表征,样品具有高结晶度,颗粒均一性良好。晶型转变的初步探究表明,立方相为主的钛酸钡可以在400℃发生晶相转变,成为以四方相为主的钛酸钡。  相似文献   
76.
秦永华 《化学教育》2014,35(12):42-44
分析了在高职院校药学专业中构建以化学为中心的选修课程体系的必要性,对其设置思路进行了探讨并构建了4类选修课程,即生活运用类、知识扩展类、思维发散类和能力拓展类。同时针对选修课程实施中的目标定位、课程整合、师资和课时等问题作了讨论。  相似文献   
77.
建立了同时测定果汁中5种植物生长调节剂(PGRs)的分散固相萃取-高效液相色谱-荧光检测(HPLC-FLD)分析方法。采用水热法合成金属-有机骨架(MOF)材料MIL-101粒子,并用MIL-101作为吸附剂,分散固相萃取样品中5种PGRs。优化的最佳萃取条件为:每10mL样品溶液(调节pH=6)加入10mg吸附剂,萃取时间6min,0.8mL甲醇解吸。样品经Eclipse XDB-C8色谱柱分离,在激发波长280nm、发射波长340nm下进行荧光检测。结果表明,5种植物生长调节剂在线性范围内相关系数均大于0.9980;方法的检出限以信噪比(S/N)≥3计为0.07~0.25μg/L,加标回收率为88.4%~103.8%,相对标准偏差(RSDs)为2.7%~5.1%。该方法选择性好、灵敏度高、重现性好、准确度高,适用于果汁中PGRs的测定。  相似文献   
78.
以"香料香精应用"教学创新实践为例,从科学设计教学内容和创新教学形态出发,就专业基础课如何将思维能力的培养贯穿在整个理论教学和实验教学的改革过程中,怎样在有效跟踪学生自主学习过程中强化其学习能力及培养思维能力进行了初步探索,就如何通过改革考核模式在公平公正评价学生自主学习效果的同时实现科学评价其学习能力强化程度以及思维能力培养程度进行了研究,并对该课程的理论教学和实验教学改革实践及化妆品专业人才培养方式的创新进行了总结。  相似文献   
79.
为了节约能源,湖北省农机局对本省拖拉机的能源消耗情况进行了抽样调查。调查面涉及七个县近千台拖拉机。本文以某县的70台“工农-12”手扶拖拉机(使用195型柴油机)的观察值为例,扼要介绍多元统计分析处理数据的结果。内容侧重两方面:其一是拖拉机的平均燃油耗预测;其二是据与平均燃油耗有关的因素,对拖拉机进行分类。 所有计算工作都借助于DJS-21型电子计算机进行。 一、关于“工农-12”手扶拖拉机平均燃油耗的预测 为了对拖拉机的平均燃油耗g.(克/小时)进行预测,我们采用逐步回归分析的方法。根据初步分析,影响平均燃油耗ge的主要因素有…  相似文献   
80.
针对载机未装备主惯导系统的弹载捷联惯导初始对准问题,提出了一种基于机载GPS信息的动基座传递对准算法。首先利用惯性凝固思想设计了基于比力积分和GPS速度信息的惯性系粗对准算法,粗略估计弹载惯导的初始姿态;然后通过分析惯导系统在惯性系下的导航误差方程,设计了基于GPS信息的"速度+位置"匹配卡尔曼滤波精对准算法,对粗对准误差做进一步估计补偿。车载试验结果为:与车载激光捷联惯导输出相比,水平和方位对准精度分别为6’和18’。试验验证了该算法的有效性,为未装备机载主惯导的弹载捷联惯导的快速初始化提供了工程应用参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号