首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   11篇
  国内免费   77篇
化学   127篇
数学   1篇
物理学   6篇
  2022年   1篇
  2019年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   5篇
  2011年   8篇
  2010年   11篇
  2009年   6篇
  2008年   18篇
  2007年   16篇
  2006年   12篇
  2005年   10篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1998年   2篇
  1997年   2篇
  1996年   8篇
  1995年   7篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
  1982年   3篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
41.
在HCl介质中,12-钨磷酸(TP)分别与盐酸氯丙嗪(CPZ)和盐酸异丙嗪(PMZ)反应形成离子缔合物,导致溶液的共振瑞利散射(RRS)显著增强,并产生新的RRS光谱.它们的最大RRS峰位于359 nm (TP-CPZ)和346 nm (TP-PMZ),并且在一定范围内,CPZ和PMZ的浓度与散射强度呈线性关系,据此提出流动注射-共振瑞利散射 (FIA-RRS) 联用技术测定CPZ和PMZ的新方法,CPZ和PMZ的检出限分别为1.7和3.0 μg/L.实验优化了流动注射(FIA)参数和反应条件,并以灵敏度较高的CPZ为例,考察了共存物质的影响.本方法具有良好的选择性和重复性;用于药片和猪肝中CPZ的测定,结果满意.  相似文献   
42.
在pH为9.0的Clark-Lubs缓冲溶液中, 强力霉素、土霉素、四环素和金霉素等四环素类抗生素与钨酸钠反应形成1∶1的阴离子螯合物, 它仅能引起吸收光谱的变化, 不能引起共振瑞利散射(RRS)的增强, 但是当该螯合物进一步与乙基紫反应形成三元离子缔合物时, RRS显著增强并产生新的RRS光谱, 它们具有相似的光谱特征, 最大RRS波长均位于328 nm处. 4种抗生素的线性范围和检出限分别为0.047~4.8 μg•mL-1和14.1 ng•mL-1(强力霉素); 0.078~5.0 μg•mL-1和23.5 ng•mL-1(土霉素); 0.081~5.7 μg•mL-1和24.4 ng•mL-1(四环素); 0.122~7.7 μg•mL-1和36.6 ng•mL-1(金霉素). 考察了三元离子缔合配合物的组成, 讨论了配合物的结构和反应机理, 并发展了一种高灵敏、简便快速测定四环素类抗生素的新方法.  相似文献   
43.
在pH=5.0—9.0的水溶液中, 硫化镉纳米微粒[(CdS)n]与蒽环类抗生素米托蒽醌(MXT)、 表柔比星(EPI)和柔红霉素(DNR)凭借静电引力及疏水作用力结合, 形成粒径更大的聚集体, 导致共振瑞利散射(RRS)的增强并产生新的RRS光谱, 最大的RRS峰位于292 nm(MXT体系)、 285 nm(DNR体系)和315 nm(EPI体系). 与此同时还观察到二级散射(SOS)和倍频散射(FDS)强度明显提高. 其最大SOS峰位于540 nm(MXT体系)和560 nm(EPI及DNR体系), 而最大的FDS峰分别位于335 nm(MXT体系)、 320 nm(EPI体系)和330 nm(DNR体系). 在一定条件下, 3种散射强度(ΔI)均与药物的浓度成正比, 反应具有高灵敏度, 对于3种药物的检出限在3.6—9.1 ng/mL之间. 其中(CdS)n-MXT体系灵敏度最高, 对MXT的检出限分别为4.1 ng/mL(RRS)、 3.8 ng/mL(SOS)和3.6 ng/mL(FDS). 据此发展了一种用纳米硫化镉作探针, 灵敏、 简便并快速测定蒽环类抗癌药物的共振瑞利散射新方法.  相似文献   
44.
段慧  刘忠芳  刘绍璞 《化学学报》2008,66(8):969-974
在酸性介质中加热, 使阿莫西林(AMO)和氨苄西林(AMP)等侧链含苄氨基的青霉素类抗生素发生降解, 其降解产物青霉胺和苄氨基青霉醛在pH 5左右的弱酸性介质中能进一步与钯(II)反应形成物质的量比为1∶1∶1的混配型三元配合物, 此时将引起共振瑞利散射(RRS)的显著增强, 并出现新的RRS光谱. 钯(II)与两种药物的反应产物具有相似的RRS光谱特征, 最大散射波长均位于370 nm. 在一定范围内散射增强(ΔI)与药物的浓度成正比. 该方法具有较高的灵敏度, 对于AMO和AMP的检出限(3δ)分别为18.0和15.4 ng•mL-1. 此时侧链不含苄氨基的其他青霉素不产生类似反应, 并且也允许一定量的其它物质存在, 因此, 方法有较好的选择性, 可用于胶囊、片剂及血清、尿样中阿莫西林和氨苄西林的测定, 能获得较满意的结果.  相似文献   
45.
头孢曲松钠;Cu(Ⅱ);赤藓红;共振瑞利散射法;分光光度法;荧光猝灭法  相似文献   
46.
在pH值为4.5~5.5的BR缓冲溶液中,七叶皂苷钠(SA)阴离子与夜蓝(NB)阳离子反应,形成1:1的离子缔合物并引起共振瑞利光散射(RRS)急剧增强和产生新的RRS.最大散射波长位于416nm处,并且七叶皂苷钠质量浓度在0.025~20×10-6g/mL范周内与散射强度(ΔI)呈线性关系,用于七叶皂苷钠分析具有较高的灵敏度,检出限为7.5×10-9g/mL.研究了适宜的分析条件和影响因素,共存物质的影响研究表明,方法的选择性较好,可满足针剂、片剂及尿液中七叶皂苷钠的测定.  相似文献   
47.
在pH值为4.1~5.0的Britton-Robinson(BR)缓冲溶液中,环丙沙星(ciprofloxacin,CPF)、诺氟沙星(norfloxacin,NRF)、氧氟沙星(ofloxacin,OFL)、左氧氟沙星(levofloxacin,LVF)等氟喹诺酮类抗菌素(fluoro-quinolone derivatives,FQs)与Pd(Ⅱ)反应形成无色阳离子螯合物,当其与曙红Y反应形成三元离子缔合物,共振瑞利散射(RRS)均显著增强,并产生新的RRS光谱,最大RRS峰均位于368nm处。在一定范围内FQNs的浓度与RRS强度(ΔI)成正比,4种抗菌素的线性范围和检出限分别为0~2.4×10-6g/mL和9.4×10-9g/mL(CPF);0~2.4×10-6g/mL和12.8×10-9g/mL(NRF);0~2.2×10-6g/mL和16.2×10-9g/mL(LVF);0~2.8×10-6g/mL和15.6×10-9g/mL(OFL)。并具有较好的选择性,用于针剂、鸡血清中诺氟沙星的测定时,其回收率在95.0%~101.5%。建立了一种灵敏、简便、快速测定喹诺酮类抗菌素的新方法。  相似文献   
48.
金纳米微粒作探针共振瑞利散射光谱法测定卡那霉素   总被引:18,自引:0,他引:18  
在一种含柠檬酸盐的溶液中, 柠檬酸根阴离子自组装于带正电荷的金纳米微粒表面, 使金纳米微粒成为一种被柠檬酸根包裹的带负电荷的超分子化合物. 在pH 4.4~6.8的弱酸性介质中, 它可与质子化的卡那霉素(KANA)阳离子借静电引力、疏水作用力结合, 形成粒径更大的聚集体(平均粒径从12增至20 nm), 这种聚集体的形成在引起金纳米的等离子体吸收带明显红移(Δλ=102 nm)的同时, 共振瑞利散射(RRS)显著增强并且倍频散射(FDS)和二级散射(SOS)等共振非线性散射也有较大的增强, 最大散射峰分别位于280 nm (RRS), 310 nm (FDS)和480 nm (SOS)处. 在适当条件下, 散射强度(ΔI)与卡那霉素的浓度成正比, 其中RRS法灵敏度最高, 因此金纳米微粒可作为测定卡那霉素的高灵敏RRS探针, 它对卡那霉素的检出限为10.52 ng•mL-1, 方法有较好的选择性, 可用于血液中卡那霉素的测定, 文中还讨论了有关反应机理和RRS增强的原因.  相似文献   
49.
在pH 1.8~3.0的Britton-Robinson(BR)缓冲溶液中,钴(Ⅱ)与2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚(5-Br-PADAP)(HL)反应形成紫红色螯合阳离子,此时仅能引起吸收光谱的变化,不能导致共振瑞利散射(RRS)的增强.当钴(ID-5-Br-PADAP螯合阳离子与阴离子表面活性剂十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SLS)和十二烷基硫酸钠(SDS)作用时,仅能与SDBS进一步反应形成三元离子缔合物并引起RRS的显著增强,而不与SDS和SLS产生类似反应.离子缔合物的RRS峰分别位于306,370和650 nm处,在一定范围内RRS增强(△I)与SDBS浓度成正比,当用650 nm处测量时,其检出限为0.043 μg·mL1,线性范围为0.14~6.0 μg·mL-1.文中研究了反应产物的RRS光谱特征,适宜的反应条件及分析化学性质,据此发展了一种在一定量SDS和SLS等阴离子表面活性剂存在下选择性测定SDBS的新方法,方法灵敏、简便、快速,用于天然水和污水中SDBS的测定,获得满意结果.文中还对反应机理进行了讨论.  相似文献   
50.
在pH4.0~5.0的弱酸性介质中,Ce(Ⅳ)能与诺氟沙星(NOR)、环丙沙星(CIP)、培氟沙星(PE)、洛美沙星(LOM)和司帕沙星(SPA)等氟喹诺酮类抗生素(FLQs)反应,并最终形成Ce(HL)(OH)4型的三元混配络合物.此时,仅能引起吸收光谱的微小变化和摩尔吸光系数(ε)的少量提高,但是却能导致共振瑞利散射(RRS)的显著增强,5种体系的最大散射波长均位于381nm附近,并在534nm处出现一个较小的散射峰,散射增强(ΔI)在一定范围内与FLQs的浓度成正比,方法有高灵敏度,对不同的FLQ其检出限(3σ)除SPA(16.0μgmL-1)之外,其余FLQs在1.9~5.3ngmL-1之间.研究了Ce(Ⅳ)与FLQs相互作用对RRS光谱的影响,反应的适宜条件和影响因素,考察了共存物质的影响,表明方法有良好的选择性,可用于某些样品中FLQs的测定.还结合吸收光谱的变化和量子化学计算,讨论了反应机理及散射增强的原因.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号