全文获取类型
收费全文 | 321篇 |
免费 | 9篇 |
国内免费 | 105篇 |
专业分类
化学 | 300篇 |
数学 | 9篇 |
物理学 | 126篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 6篇 |
2017年 | 6篇 |
2016年 | 3篇 |
2015年 | 7篇 |
2014年 | 10篇 |
2013年 | 5篇 |
2012年 | 86篇 |
2011年 | 113篇 |
2010年 | 18篇 |
2009年 | 5篇 |
2008年 | 12篇 |
2007年 | 20篇 |
2006年 | 22篇 |
2005年 | 15篇 |
2004年 | 7篇 |
2003年 | 17篇 |
2002年 | 8篇 |
2001年 | 12篇 |
2000年 | 10篇 |
1999年 | 5篇 |
1998年 | 5篇 |
1997年 | 5篇 |
1996年 | 6篇 |
1995年 | 2篇 |
1994年 | 5篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1990年 | 2篇 |
排序方式: 共有435条查询结果,搜索用时 15 毫秒
31.
Das Arulsamy A Kregar Z Eleršič K Modic M Subramani US 《Physical chemistry chemical physics : PCCP》2011,13(33):15175-15181
Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature. 相似文献
32.
The mechanism of dithiophosphinate (DTPI) adsorption on chalcopyrite was investigated by diffuse reflectance Fourier transformation (DRIFT) spectroscopy and by cyclic voltammetry (CV) at various pHs. CV experiments showed that the redox reactions occurred at a certain degree of irreversibility on the chalcopyrite surface in the absence of a collector due to preferential dissolution of iron ions in slightly acid solution and irreversible surface coverage by iron oxyhydroxides in neutral and alkaline solutions. In the presence of DTPI, CV experiments failed to identify the type of the adsorbed DTPI species and electrochemical processes occurring on chalcopyrite due to formation of an electrochemically passive surface layer preventing electron transfer. However, DRIFT spectroscopy tests showed this passive layer to be mainly CuDTPI + (DTPI)2. Both CV and DRIFT spectroscopy established that the activity of collector species decreased with increasing pH due to formation of stable hydrophilic metal oxyhydroxides on the chalcopyrite surface. 相似文献
33.
CH_3自由基和O(~3P)反应机理的量子化学研究 总被引:4,自引:0,他引:4
用分子轨道从头计算MP2(full)方法和密度泛函理论(DFT)中的B3LYP方法 研究了CH_3自由基和三线态O原子反应的微观机理,优化得到了反应途径上的反应 物、过渡态、中间体和产物的几何构型,通过振动分析对过渡态和中间体构型进行 了确认,在G3不平上计算了能量,同时用经典过渡态理论对该反应的绝对速率常数 进行了理论计算。研究结果表明:CH_3自由基与O(~3P)反应有四条不同的放热反 应通道,主反应通道为IM1→TS1→CH_2O + H,同时反应可彻底裂解生成CO, H_2 及H。 相似文献
34.
35.
A novel nanoparticle-based enhanced methodology for the detection of ssDNA using nanoporous alumina filter membranes, containing pores of 200 nm in diameter, is reported. The blockage of the pores due to the hybridization is detected by measuring the decrease in the differential pulse voltammetric response of the [Fe(CN)(6)](4-/3-) redox indicator and using screen-printed carbon electrodes as transducing platform. Furthermore, 20 nm gold nanoparticle (AuNPs) tags are used in order to increase the sensitivity of the assay. The enhancement mechanism of DNA detection is due to an additional blocking effect induced by hybridization reaction by bringing AuNPs inside the pores. The developed methodology can be extended to other biosensing systems with interest not only for DNA but also for proteins and cells. The developed nanochannel/nanoparticle biosensing system would have enormous potential in future miniaturized designs adapted to mass production technologies such as screen-printing technology. 相似文献
36.
Cantanhêde Silva W Guix M Alarcón Angeles G Merkoçi A 《Physical chemistry chemical physics : PCCP》2010,12(47):15505-15511
Control of molecular and supramolecular properties is used to obtain a new advanced hybrid material based on Prussian blue nanoparticles (PB NPs). This hybrid material is obtained through a self-assembled Layer-by-Layer (LbL) approach combining the advantageous features of β-cyclodextrin (β-CD) polysaccharides, PB NPs and poly(allylamine hydrochloride) from electrostatic interaction between the deposited layers. Transmission electronic microscopy images suggested that PB NPs were protected by β-CD polysaccharides that prevent the aggregation phenomena. In addition, as confirmed by scanning electronic microscopy images, it was found that PB NPs are organized in microcubic supramolecular like structures via a mesoscale self-assembly process. Interestingly, the 3-bilayer {PAH/PB-CD} film exhibited a higher density of microcubic structures and a high electrochemical response with PB sites available for redox reactions at a supramolecular level. By utilizing fewer bilayers and consequently less material deposition, the formed {PAH/PB-CD} multilayer films of a tuneable conductivity can be expected to have interesting future applications for host-guest like dependent electrochemical biosensing designs. 相似文献
37.
采用密度泛函理论(DFT), 在B3LYP/6-311++G(d,p)基组上计算得到了21种N8H8链状异构体, 并研究了这些异构体间可能的互变异构情况. 为了得到更为精确的能量信息, 计算了QCISD(T)/6-311G(d,p)基组水平上各物质的能量. 所得的21种异构体分为4类(4种类型链状化合物): A为直链, B有一个支链, C有2个支链, D有3个支链; D类只有一种, A类稳定构型2种, B类稳定构型12种, C类稳定构型6种; 相对稳定的分别为: B2-1构型, B2-3构型和C23-2构型. 我们研究发现N8H8链状异构体中含有明显N=N双键特征有利于化合物稳定性的提高. 相似文献
38.
The performance of microchip electrophoresis/electrochemistry system with carbon nanotube (CNT) film electrodes was studied. Electrocatalytic activities of different carbon materials (single-wall CNT (SWCNT), multiwall CNT (MWCNT), carbon powder) cast on different electrode substrates (glassy carbon (GC), gold, and platinum) were compared in a microfluidic setup and their performance as microchip electrochemical detectors was assessed. An MWCNT film on a GC electrode shows electrocatalytic effect toward oxidation of dopamine (E(1/2) shift of 0.09 V) and catechol (E(1/2) shift of 0.19 V) when compared to a bare GC electrode, while other CNT/carbon powder films on the GC electrode display negligible effects. Modification of a gold electrode by graphite powder results in a strong electrocatalytic effect toward oxidation of dopamine and catechol (E(1/2) shift of 0.14 and 0.11 V, respectively). A significant shift of the half-wave potentials to lower values also provide the MWCNT film (E(1/2) shift of 0.08 and 0.08 V for dopamine and catechol, respectively) and the SWCNT film (E(1/2) shift of 0.10 V for catechol) when compared to a bare gold electrode. A microfluidic device with a CNT film-modified detection electrode displays greatly improved separation resolution (R(s)) by a factor of two compared to a bare electrode, reflecting the electrocatalytic activity of CNT. 相似文献
39.
Llabrés i Xamena FX Teruel L Alvaro M Garcia H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(2):515-519
We have used porous anodised Al(2)O(3) membranes as inert matrix for constructing and organizing spatially ternary donor/conductor/acceptor (DCA) systems exhibiting photovoltaic cell activity on the micrometric-length scale. These DCA triads were built stepwise by first growing a conducting polymer inside the membrane pores, thus forming nanorods that completely fill the internal pore space of the membrane. Then, an electron donor and an electron acceptor were adsorbed one on each side of the membrane, so that they were separated by a distance equal to the membrane thickness (ca. 60 microm), but electronically connected through the conductive polymer. When this device was placed between two electrodes and irradiated with visible light, electrons jumped from the donor molecule, crossed the membrane from side to side through the conductive polymer (a journey of about 60 microm!) until they finally reach the acceptor molecule. In so doing, an electric voltage was generated between the two electrodes, capable of maintaining an electric current flow from the membrane to an external circuit. Our DCA device constitutes the proof of a novel concept of photovoltaic cells, since it is based on the spatial organization at the micrometric scale of complementary, but not covalently linked, electron-donor and electron-acceptor organic species. Thus, our cell is based in translating photoinduced electron transfer between donors and acceptors, which is known to occur at the molecular nanometric scale, to the micrometric range in a spatially organised system. In addition our cell does not need the use of liquid electrolytes in order to operate, which is one of the main drawbacks in dye-sensitised solar cells. 相似文献
40.
Becerril R Gómez-Lus R Goñi P López P Nerín C 《Analytical and bioanalytical chemistry》2007,388(5-6):1003-1011
The aim of this work is the optimization and application of a group of analytical and microbiological techniques in the study
of the activity of essential oils (EOs) incorporated in a new antimicrobial packaging material and the research in depth of
the interaction between the microbial cells and the individual compounds present in the active material. For this purpose
the antimicrobial activity of the active packaging containing cinnamon or oregano was evaluated against E. coli and S. aureus. The vapour phase activity and the direct contact between the antimicrobial agents themselves, or once incorporated in the
packaging material, and the microbial cells have been studied. The direct contact was studied using a broth dilution method.
The vapour phase was evaluated by using a new method which involves the use of a filter disk containing the EOs. Furthermore,
the kill time assay was used to determine the exposure time for the maximum efficiency in packaging, and transmission electron
microscopy was used to investigate the antimicrobial activity and the possible mechanism of action against E. coli and S. aureus. Finally, the compounds absorbed by cells were identified. The results showed that the techniques used provide relevant information
about the antibacterial activity of cinnamon and oregano in direct contact as well as in the vapour phase. The antimicrobial
packaging showed a fast efficiency which supports its likely application as a food packaging material. Bacteria treated with
EOs exhibit a wide range of significant abnormalities; these include formation of blebs, coagulation of cytoplasmatic constituents,
collapse of the cell structure and lack of cytoplasmatic material. Some of these observations are correlated to the ability
of some of these substances to disrupt envelop structure, especially the inner membrane. After an extraction from dead cells,
cinnamaldehyde was detected by GC-MS in E. coli exposed to the active packaging containing cinnamon. 相似文献