首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   11篇
  国内免费   63篇
化学   32篇
物理学   50篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   12篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1994年   6篇
排序方式: 共有82条查询结果,搜索用时 718 毫秒
51.
报道260—360nm波长范围内CF自由基(2+1)共振增强多光子电离(REMPI)激发谱的研究-CF自由基通过Ar/CF4,Ar/CF2Cl2或Ar/CF3COOH混合气体的直流脉冲放电产生-在260—295nm波长范围内,观测到一个新的高Rydbery态振动序列,其带源位于295-22nm(2hν=67746cm-1),分析表明,该振动序列来源于5p Rydberg态的二光子共振激发,测得的振 关键词:  相似文献   
52.
研究了用一系列不同类型的分子筛催化剂催化转化制取低碳烯烃的过程,测试的催化剂包括HZSM-5、MCM-41、SAPO- 34和Y型分子筛.按照低碳烯烃的绝对收率和选择性,催化剂的活性排序为:HZSM-5>SAPO-34>MCM-41>Y型分子筛.研究表明,使用HZSM-5分子筛催化剂,获得的生物油最大低碳烯烃收率约为0.22 kg/(kg生物油),低碳烯烃的选择性约为50%,且生物油几乎实现完全转化.同时还研究了反应条件对生物油制低碳烯烃的影响.为了弄清催化剂结构与和低碳烯烃形成之间的关系,对相关催化剂进行了详细表征,对生物油热裂解和催化裂解过程进行了详细比较.  相似文献   
53.
利用溶胶-凝胶法制备了多孔晶体材料C12A7-Cl- (Ca12Al14O32Cl2), 制备凝胶的原料是四水合硝酸钙、九水合硝酸铝、氯化钙、尿素和乙二醇. 混合溶液经过搅拌2-3 h形成溶胶, 再经350 ℃热处理后形成凝胶体, 最终在流动氩气气氛中1000 ℃烧结后得到材料. 用X射线衍射, 场发射扫描电子显微镜, 热重分析, 电子顺磁共振和离子色谱等方法表征合成的C12A7-Cl-多孔晶体材料. 结果表明, 利用溶胶-凝胶法成功地生成了C12A7 结构, 氯负离子是材料中存储的主要负离子. 此外, 从C12A7-Cl-晶体材料表面发射的氯负离子也被飞行时间质谱观测到. 上述结果说明溶胶-凝胶法可被用于制备C12A7-Cl-晶体材料.  相似文献   
54.
研究了生物质气化合成气在Fe1.5Cu1Zn1Al1K0.117催化剂上高效转化为清洁生物燃料的合成过程. 利用生物质气化合成气合成的生物燃料最大产率为1.59 kg/(kgcatal·h), 其中醇占0.57 kg/(kgcatal·h), 液体烃占1.02 kg/(kgcatal·h). 在生物燃料中, 醇类产物主要为C2+醇(主要为C2-C6高碳醇), 其含量占总醇的7  相似文献   
55.
一种组合了合成气在线调整和甲醇合成的双段床反应器,成功应用于由生物油重整得到的富CO2合成气的高效合成甲醇.在前段催化床反应器内,富含CO2的原始生物质合成气在CuZnAlZr催化剂的催化作用下可以有效地转化为含CO的合成气.经过450 oC的合成气在线调整之后,CO2/CO的比率由6.3大幅降至1.2.经过调整后的生物质基合成气在后段催化床反应器内由工业CuZnAl催化剂催化合成甲醇,当反应条件为260 oC 和5.5 MPa时得到每小时每kg催化剂的最大甲醇  相似文献   
56.
SF2自由基3d,5s里德伯态的实验确认   总被引:1,自引:0,他引:1       下载免费PDF全文
利用自行研制的脉冲直流放电装置产生SF2自由基,结合共振增强多光子电离(REMPI)技术,研究了27—294nm范围内SF2自由基(2+1)REMPI激发谱,获得了SF2自由基3d,5s里德伯态相应的带源及被激活的对称伸缩振动模的振动频率,并估算了这些态的量子亏损值. 关键词:  相似文献   
57.
C12A7-MgO催化剂上的生物油裂解制氢   总被引:4,自引:0,他引:4  
快速裂解生产生物油被认为是最经济的生物质生产液体燃料的路线之一.液体生物油具有易收集、易存储、易运输优势.与直接气化相比,生物油更容易通过改性转化为燃料;还能从中提取某些具有很高价值的化工原料和产品.因此,生物质裂解液化制生物油具有十分重要的意义.对生物质进行热化学处理以得到富氢燃气已进行了一些研究[1,2].而关于生物油裂解产氢的研究较少[3].本工作利用我们合成的C12A7MgO催化剂,研究了催化裂解生物油制备富氢燃气的活性以及催化剂寿命,并用X射线衍射方法对催化剂的结构进行了表征.将CaCO3和γAl2O3按摩尔比12∶7研磨…  相似文献   
58.
利用Ar/CF4、Ar/CF2Cl2或Ar/CF3COOH混合气体的直流脉冲放电产生CF自由基,观测了260~360nm范围内转动分辨的CF自由基双光子共振增强多光子电离谱。分析表明,该段光 谱对应于CF自由基3pπD2Πr(ν'=2~6,r=3/2,1/2)←←X2Πr(ν"=0,r=3/2,1/2)的共振激发。对观测的振动带进行了转动分析,并获得了3p里德堡态的转动常数和自旋-轨道分裂值。  相似文献   
59.
The surface oxidation of silicon (Si) wafers by atomic oxygen radical anions (O- anions) and the preparation of metal-oxide-semiconductor (MOS) capacitors on the O-oxidized Si substrates have been examined for the first time. The O- anions are generated from a recently developed O- storage-emission material of [Ca24Al2sO64]^4+·4O^- (Cl2A7-O^- for short). After it has been irradiated by an O- anion bean: (0.5 μA/cm^2) at 300℃ for 1-10 hours, the Si wafer achieves an oxide layer with a thickness ranging from 8 to 32 nm. X-ray photoelectron spectroscopy (XPS) results reveal that the oxide layer is of a mixture of SiO2, Si2 O3, and Si2O distributed in different oxidation depths. The features of the MOS capacitor of 〈Al electrode/SiOx/Si〉 are investigated by measuring capacitance-voltage (C - V) and current-voltage (I - V) curves. The oxide charge density is about 6.0 × 10^1 cm^-2 derived from the (C - V curves. The leakage current density is in the order of 10^-6 A/cm^2 below 4 MV/cm, obtained from the I - V curves. The O- anions formed by present method would have potential applications to the oxidation and the surface-modification of materials together with the preparation of semiconductor devices.  相似文献   
60.
The two-photon resonance-enhanced multiphoton ionization spectrum between 285 and 288.5 nm of the 5pπE2Πr(v’=1)←X2Πr(v’’=0) band of CF radical is reported. The band is rotationally analyzed, and the spectroscopic constants of the state are first derived: σ0 = 69566.38±0.52 cm-1, A'v= 46.4±0.3 cm-1, B'v= 2.565±0.017 cm-1, D' v = (8.6±1.2)×10-6cm-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号