首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   64篇
  国内免费   82篇
化学   194篇
晶体学   4篇
力学   30篇
综合类   22篇
数学   82篇
物理学   166篇
  2024年   4篇
  2023年   17篇
  2022年   20篇
  2021年   15篇
  2020年   8篇
  2019年   18篇
  2018年   17篇
  2017年   14篇
  2016年   5篇
  2015年   15篇
  2014年   23篇
  2013年   16篇
  2012年   24篇
  2011年   22篇
  2010年   19篇
  2009年   22篇
  2008年   30篇
  2007年   24篇
  2006年   35篇
  2005年   13篇
  2004年   13篇
  2003年   16篇
  2002年   12篇
  2001年   11篇
  2000年   21篇
  1999年   8篇
  1998年   7篇
  1997年   8篇
  1995年   2篇
  1994年   3篇
  1992年   7篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1972年   1篇
  1964年   2篇
  1955年   1篇
排序方式: 共有498条查询结果,搜索用时 15 毫秒
471.
本文报道采用硅胶预柱快速分离干扰杂质后用CGC-FID法测定尿中多胺。最低极限可测到1nmol。该法快速、灵敏、重现性好、所得回收率高、可用于临床诊断。  相似文献   
472.
本文利用均值方差模型,分析了非线性交易成本下的共同资金投资的有效边界和在一般的效用函数下讨论了最优投资组合和最大效用,其中只考虑风险资产的总投资比例对交易成本的影响.  相似文献   
473.
半导体玻璃微通道板的研制   总被引:1,自引:0,他引:1  
介绍了半导体玻璃微通道板的主要性能,并与传统铅硅酸盐玻璃的相关性能进行了比较。阐述了半导体玻璃的研制工艺,研究了利用半导体玻璃材料制备微通道板的工艺途径,开发了靠玻璃本身体电导性质而无需氢还原工艺的微通道板,即半导体玻璃微通道板。研制出孔径为20μm、外径为12mm的半导体玻璃微通道板,实验利用紫外光电法测试了微通道板的增益、闪烁噪声和成像性能。结果表明新型微通道板具有明显的电子增益和低的闪烁噪声,并且通道表面稳定;利用磷硅酸盐玻璃材料可以实现体导电微通道板的制备。  相似文献   
474.
通过对子级数的探讨,得到了一类级数和其子级数的敛散性的判断准则.与此同时,对文[3]的结论进行了推广.  相似文献   
475.
氨水-Fe2O3纳米流体稳定性影响因素分析   总被引:1,自引:0,他引:1  
为了将纳米颗粒的强化传热传质作用应用于氨水吸收制冷中,提出了在氨水溶液中添加Fe203纳米颗粒和表面活性剂十二烷基苯磺酸纳(SDBS)的纳米流体的配制方法,并通过沉降试验和吸光度测试方法对其稳定性进行了实验研究。研究了活性剂质量分数、超声分散时间和氨水浓度对稳定性的影响,确定了Fe2O3-氨水纳米流体分散的最佳工艺为:...  相似文献   
476.
建立了采用悬浮液进样-基体改进石墨炉原子吸收光谱法直接测定松香中微量砷的分析方法。以无水乙醇为样品润湿剂,硝酸钯为基体改进剂,考察了样品粒度、悬浮剂浓度、样品用量、基体改进剂的选择及用量、原子化温度及常见共存离子等因素对测定结果的影响。在优化的实验条件下,方法对砷的检出限(3σ)为0.061μg/g,相对标准偏差(RSD)为3.77%,加标回收率在97.8%~102.2%之间。与干灰化预处理法进行对照实验,测定结果无显著性差异。  相似文献   
477.
通过真空热压烧结方法制备Ni/Ti2AlC复合材料,并对材料进行热处理,考察了两种不同热处理工艺对复合材料的显微组织和室温及800 ℃下摩擦学性能的影响. 结果表明:烧结后,Ni/10%Ti2AlC复合材料包含Ni基固溶体、TiCx、Ni3Al和少量Al2O3,而Ni/50%Ti2AlC主要由Ni2TiAl、TiCx、Ti3NiAl2C和少量Al2O3组成. 分别于1 200和1 350 ℃热处理16 h后,Ni/10%Ti2AlC中的Ni3Al相和Ni/50%Ti2AlC中的Ti3NiAl2C相消失. 热处理导致TiCx相的生长,复合材料显微组织得到优化,同时材料保持了高度致密性. 热处理后,两种复合材料的维氏硬度下降,这主要归结于Ni3Al强化相的消失和碳化物的长大. 随着热处理温度的升高,室温下复合材料的磨损率降低,这主要归结于热处理优化了显微组织,提高了两相结合强度,进而抑制了TiCx颗粒的脱出,减少了磨粒磨损的发生;800 ℃摩擦条件下,热处理前后,复合材料均表现出较低的摩擦系数和磨损率,这主要归结于高温下磨损表面形成的由TiO2、NiO和NiTiO3组成的润滑膜所起到的减摩抗磨作用,此外,热处理使得显微组织更均匀,更有利于磨损表面TiO2和NiTiO3润滑相的形成,对摩擦学性能有利.   相似文献   
478.
采用激光复合工程技术对Ti6Al4V基体表面进行强化耐磨处理,首先在Ti6Al4V合金表面进行激光氮化[Ti(N)]和氮氧化[Ti(N,O)]处理,然后在纯氩气气氛中分别对Ti(N)层和Ti(N,O)层进行激光重熔处理,制备了组织分布更为均匀的重熔氮化层[Re-Ti(N)]和重熔氮氧化层[Re-Ti(N,O)]. 组织结构分析揭示了Re-Ti(N)层主要由富氮αˊ-Ti和TiNx组成,而Re-Ti(N,O)层则主要由富氧αˊ-Ti和TiNxOy组成. 相对于Ti6Al4V基体,Re-Ti(N)层和Re-Ti(N,O)层的硬度、弹性模量和磨损量降低了2倍以上,然而激光复合处理前后材料均表现出较大的摩擦系数. 相对于Re-Ti(N)层,氧原子的加入,不仅能够有效细化组织和提升强韧度,而且显著抑制了摩擦界面的黏着磨损. 通过磨屑结构分析进一步验证了基体黏着磨损机制和重熔改性层磨粒磨损机制.   相似文献   
479.
点击反应由Sharpless提出,是一类具有高效、可靠、高选择性等特点的反应,被广泛用于各种拓扑结构聚合物的制备.目前,应用较为广泛的点击反应主要有Cu(I)催化的叠氮/炔环加成反应(CuAAC)、Diels-Alder(D-A)反应、巯基-烯及巯基-炔点击反应和氮氧自由基偶合反应.近年来,将多种点击反应结合起来,为高效合成拓扑结构聚合物提供了新的思路.本文综述了近几年来采用多重点击反应策略联用制备拓扑结构聚合物的研究进展,并对其发展趋势进行展望.  相似文献   
480.
An electrochemical biosensor for low cost and highly sensitive and selective detection of SARS-CoV-2 target nucleic acid was developed based on two cascaded toehold-mediated strand displacement reactions (TSDRs). Driven by thermodynamic entropy, the target nucleic acid bound to the first toehold region of the probes, leading to the first TSDR and the second toehold region exposed. Subsequently, the methylene blue (MB)-modified signal probe triggered the second TSDR and led to cyclic reuse of the target nucleic acid. Based on cascaded TSDRs, a large number of signal probes were combined on the sensor surface to produce significantly enhanced square wave voltammetry (SWV)electrochemical signals. The results showed that the SWV signal intensity was proportional to the logarithm of the target nucleic acid concentration, and had a good linear relationship in the range of 5×10-14-5×10-10 mol/L with a detection limit of 1.8×10-14 mol/L. Moreover, the sensor could be employed to monitor SARS-CoV-2 nucleic acid in 10% serum samples. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号