排序方式: 共有86条查询结果,搜索用时 1 毫秒
1.
采用阳极氧化水解法对染料敏化纳米TiO2薄膜太阳电池的光阳极进行不同方式的电沉积优化处理.借助x射线衍射仪对处理后的样品进行分析,通过超高分辨率场发射扫描电子显微镜对导电玻璃以及电沉积处理前后纳米多孔薄膜表面进行了粒径和形貌的扫描.染料敏化太阳电池实验测试结果表明,电沉积处理和修饰后可以明显提高光生电子的收集率,增大短路电流密度,提高电池效率.
关键词:
2')" href="#">纳米TiO2
染料敏化
电沉积
太阳电池 相似文献
2.
在电子扩散微分方程的基础上,研究了染料敏化太阳电池光生电流和光生电压随光照强度不同的变化关系.提出敏化太阳电池串联阻抗功率损耗模型,理论模拟了大面积电池(有效面积>1 cm2)光电转换效率随多孔薄膜有效面积宽度变化的曲线、透明导电基底膜与银栅极的比接触电阻以及在不同入射光强下银栅极体电阻对大面积染料敏化太阳电池光伏性能的影响.结果表明透明导电基底膜的方块电阻和银栅极体电阻对大面积染料敏化太阳电池的性能有很大影响,而这种影响随光强的减弱逐渐减小.
关键词:
染料敏化
太阳电池
串联阻抗
光电转换效率 相似文献
3.
采用高压釜合成和乙酸乙酯/水萃取提纯的模式制备出高产率、高纯度的环状烷基硫碘盐. 高压釜合成在保证产率的前提下, 大大缩短了反应时间(反应时间仅为原来的1/3)|乙酸乙酯和水的萃取提纯模式在保证产品纯度的同时, 大大缩短了提纯时间, 还避免了有毒试剂的使用. 制备出的烷基环状硫碘盐作为碘源用于配制染料敏化太阳电池用电解质, 相应电池的光电转化效率接近使用传统烷基咪唑碘盐的电池. 电化学阻抗谱(EIS)测试表明环状烷基锍阳离子相比于烷基咪唑阳离子来说, 更有利于抑制电池内部的电子复合反应, 同时还能促进对电极上电子交换反应的进行, 最终可以提高电池的开路电压和填充因子. 相似文献
4.
为了改善染料敏化太阳电池内电子的传输复合过程, 研究者尝试不同方法制备或改性TiO2薄膜. 对TiO2薄膜进行后处理, 在其表面引入一层小颗粒层, 是一种有效的方法并被广泛研究. 通过对TiO2薄膜不同时间的电沉积表面修饰, 细致研究了表面修饰后染料敏化太阳电池微观性能的变化机制. 采用阳极氧化法在TiCl3水溶液中对TiO2薄膜进行电沉积后处理, 将溶液pH值调至2.2, 装置的反应速率由恒电位仪控制. 不同沉积时间电池带边移动以及电子传输复合的动力学过程, 借助强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)和电化学阻抗谱(EIS)等探测技术表征. 研究表明, 电沉积在TiO2薄膜表面引入了大量浅能级陷阱态, 以致电势较高时电容随沉积时间延长增加明显. 不同时间的电沉积表面修饰在TiO2薄膜表面形成了新的小颗粒层并改善了TiO2颗粒间接触, 在改善电子注入及收集过程的同时, 也有效抑制了内部电子复合. IMPS/IMVS结果表明, 电沉积对动力学过程改善的效果受光强影响明显, 弱光下作用更为突出. 此外, 电池开路电压主要受带边移动及内部复合变化影响, 随沉积时间延长, 表面电荷的增多使TiO2薄膜带边逐渐正移, 有效改善了光电流却限制了开路电压的提升. 在适合的电沉积时间下, 电沉积表面修饰可以同时改善光电流和光电压. 相似文献
5.
纳米级包覆层厚度对染料敏化太阳电池中电子注入效率和电子寿命的影响 总被引:1,自引:0,他引:1
选取氧化钐作为包覆材料, 采用浸渍法对已烧结好的纳米TiO2多孔薄膜电极进行修饰, 并将其应用于染料敏化太阳电池中, 研究了纳米级氧化钐包覆层厚度及均匀性对染料敏化太阳电池中电子注入效率和电子复合过程的影响和作用机制. 结果表明, 包覆层厚度对电子注入效率和电子复合具有明显影响, 且电子注入效率和电子寿命随包覆层厚度的增加而呈现相反的变化趋势, 包覆层厚度在0.4 nm以内, 电池性能最好. 相似文献
6.
7.
空穴传输层在钙钛矿太阳电池(Perovskite solar cell, PSC)中起着抽取和传输钙钛矿层产生的光生空穴、抑制电子回流等重要作用,是构成高性能器件的重要组成部分.经典的空穴传输材料,如2,2’,7,7’-四[N,N-二(4-甲氧基苯基)氨基]-9,9’-螺二芴(spiro-OMe TAD)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)等,空穴迁移率低、价格昂贵等缺点限制了其规模化应用.近年来,在反式PSC中自组装单分子层(self-assembledmonolayers,SAM)作为空穴传输层广泛应用,提升了器件性能.SAM分子结构中含有锚定官能团,可以在衬底上形成单分子薄膜,有着材料消耗小、无需添加剂、寄生吸收低、能够兼容叠层器件和有利于大面积制造等优点,已成为PSC领域的研究热点.本综述结合PSC发展,按照SAM分子结构中锚定基团的不同,对近年来基于SAM的空穴传输层的研究进行了分类和归纳,结合分子骨架变化分析了结构变化对其特性及器件性能的影响.最后,对SAM作为空穴传输层的发展做了总结和展望. 相似文献
8.
介绍了一台低成本的常压微波等离子体炬设备,给出了该设备构造及喷嘴的设计思路,分析了各种气体的非磁化微波等离子体的击穿电场强度,数值求解了设备中矩形TE103谐振腔中的电磁场分布,应用高频电磁场模拟分析软件HFSS优化了喷嘴在波导中的具体位置,并对优化后喷嘴周围的电场分布进行了模拟。模拟结果表明:微波输入有效功率为500 W,喷嘴伸出矩形波导1 mm时,喷嘴尖端处的电场强度在1.2×106 V·m-1以上,远大于氩气的击穿电场强度,更易于等离子体炬的激发。实验结果证明了模拟结果的正确性和装置的有效性。 相似文献
9.
基于量子限域效应的新型太阳电池——量子点敏化太阳电池(QD-SSCs),由于其最大理论转化效率超过了传统的Shockley-Queisser极限效率,已经成为目前最具研究潜力的太阳电池之一。本文综述了近几年来QD-SSCs领域的研究进展,主要从半导体氧化物纳米材料,特别是其低维纳米结构下的特殊性能;金属硫族化合物纳米晶;电解质;对电极等几个方面评述了电池材料的研究进展。另外,从量子点材料的制备和组装方面简述了目前电池光阳极的研究情况,并介绍了提高量子点光敏化性能的几个新途径。最后,从开路电压和短路电流角度分析了影响电池性能的几个关键因素,并对QD-SSCs今后的发展进行了展望。 相似文献
10.
采用电化学阻抗谱(EIS)研究了染料敏化太阳电池(DSC)中由导电玻璃、 纳米多孔TiO2薄膜和电解质构成的多相复杂接触界面的电子转移机制和动力学过程. 通过沉积聚合物薄膜简化多相接触界面结构, 根据接触界面结构和电子转移途径的变化, 分析了不同偏压下多相接触界面电子转移机制, 构建与之对应的等效电路, 获得了DSC内部各个主要接触界面的电子转移动力学常数. 结果表明, 通过外加偏压的控制和多相接触界面结构的简化, 可以区别分析多相复杂接触界面电子转移机制与动力学过程. 相似文献