首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   90篇
  国内免费   28篇
化学   60篇
力学   3篇
数学   1篇
物理学   202篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   3篇
  2014年   18篇
  2013年   6篇
  2012年   10篇
  2011年   15篇
  2010年   16篇
  2009年   14篇
  2008年   19篇
  2007年   12篇
  2006年   32篇
  2005年   16篇
  2004年   12篇
  2003年   7篇
  2002年   12篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1986年   1篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
41.
OLED技术被认为是最有可能取代液晶显示的全新技术,而OLED中的有机电致磷光器件是近年来的研究热点.有机电致磷光器件的发光层往往采用主客体掺杂体系,主客体分子内的能量传递是磷光发光体分子被激发的主要途径,因此选择吸收能量和传递能量好的主体材料是改进有机电致磷光器件性能的主要途径之一.文章分别以PVK和CBP作为主体材料,以磷光材料Ir(PPY)3和荧光材料Rubrene作为掺杂剂,制备了不同配比的器件,研究了主体材料和掺杂剂之间的能量传递特性.结果发现,这两种主体材料分别通过Ir(ppy)3向Rubrene传递能量是主要的能量传递机制,而且CBP作为主体时能量传递比PVK更充分.另外掺入Ir(ppy)3后的器件比不掺Ir(ppy)3的器件在相同电压下的光功率明显增强.当我们增加Ir(PPY)3的浓度时,相同电压下的光功率下降,浓度猝灭效应增强.  相似文献   
42.
制作了底栅极顶接触有机薄膜晶体管器件,60 nm的pentacene被用作有源层,120 nm热生长的SiO2作为栅极绝缘层.通过采用不同自组装修饰材料对器件的有源层与栅极绝缘层之间的界面进行修饰,如octadecyltrichlorosilane (OTS),phenyltrimethoxysilane (PhTMS),来比较界面修饰层对器件性能的影响.同时对带有PhTMS修饰层的OTFTs器件低栅极电压调制下的场效应行为及其载流子的传输机理进行研究.结果得到,当|V 关键词: 有机薄膜晶体管 自组装单分子层 场效应迁移率 低栅极调制电压  相似文献   
43.
水热法合成稀土氟化物材料YLiF4:Er,Tm,Yb的上转换发光特性   总被引:2,自引:0,他引:2  
利用水热法合成了不同掺杂浓度Er^3 ,Tm^3 和Yb^3 的YLiF4材料,研究了Er^3 ,Tm^3 和Yb^3 在材料中的光吸收,以及在980nm红外光激发下样品的上转换发光特性。实验发现,在980nm激光激发下,光功率为数10mW,材料可以发出很强的白光。测量发现,蓝光来源于Tm^3 绿光来源于Er^3 ,而红光来源于Tm^3 和Er^3 的共同作用。通过分析输出光强与泵浦功率的双对数曲线,发现484nm蓝光发射,524和552nm绿光发射以及665nm红光发射均属于双光子过程,450nm蓝光和359nm紫外光属于三光子过程。分析发光机理属于协作敏化和声子辅助共振能量传递过程的结合。  相似文献   
44.
有机场致发光中能带模型与分子理论的讨论   总被引:3,自引:3,他引:0  
在有机场致发光中,能带模型及分子理论从20世纪就存在尖锐的矛盾。在分层优化方案中,经SiO2加速后的电子能量可以到达10eV,这足以激发发光材料发光,将分层优化方案应用到有机场致发光材料中。发现了固态阴极射线发光(SSCL),经过对它的交叉证明、普适性的验证,肯定了固态阴极射线的发光确实是在发光二极管,无机及有机场致发光之外的一种完全新型的电场诱导的发光。SSCL的特征是在它的光谱中出现短波发光峰,实验证明长波发光峰的减弱是由于电场离化效应。研究了这种效应出现的电压阈值并和SSCL的短波峰出现的电压相比,发现短波峰的出现是在激子的电场离化之后,从而找出了电子处于局域态与扩展态的分水岭,解释了在有机场致发光中能带模型和分子理论并不矛盾,只是适用的条件不同。激子的离化是随电场强度而渐进的变化,因此会有一个两种过程并存的范围。  相似文献   
45.
有机/无机复合结构光电导型器件的光激发机制   总被引:3,自引:0,他引:3  
制备了PVK/ZnS有机无机复合的光电导型器件 ,器件结构分别为Glass/ITO/PVK/Al;Glass/ITO/ZnS/Al;Glass/ITO/ZnS/PVK/Al。通过研究此复合器件在外加电场作用下的稳态光电导激发谱 ,得到了基本光激发过程。把PVK/ZnS的吸收谱和器件的光电导谱进行比较 ,知道虽然两者的吸收对器件光电流都有贡献 ,但有效部分在PVK和ZnS的界面处。最大光电流对外加电场的依赖性与器件的暗电流和光电流谱为此提供了证据  相似文献   
46.
制备了一类以苯甲酰水杨酸 (BenzoylSalicylicAcid ,BSA)为第一配体 ,邻菲罗啉 (phenanthroline ,phen)为第二配体的共掺杂稀土铕镧配合物La0 6Eu0 4(BSA) 3 phen。用其作为发光层材料制作了电致发光器件 :ITO/PVK :La0 6Eu0 4(BSA) 3 phen/Alq/Al。讨论并证明了稀土La3 与Eu3 之间存在F rster能量传递。同时将该器件与器件ITO/PVK :Eu(BSA) 3 phen/Alq/Al和ITO/PVK :Tb0 6Eu0 4(BSA) 3 phen/Alq/Al的发光进行了比较。表明该器件具有单色性好 ,整流性好的特性 ,同时得到了最大亮度为 10 2尼特的红光  相似文献   
47.
LED蓝光泄露安全性研究   总被引:5,自引:0,他引:5  
研究了LED照明器件的蓝光特性。针对我国的LED照明现状,通过测试LED照明器件的光谱成分,根据现行国内外标准GB/T 20145—2006/CIE S009/E:2002和IEC62471:2006,以及CTL-0744_2009-laser决议,分析了LED光生物安全性,给LED照明灯具制造和相关安全性标准、法律制定提供参考。LED中蓝光的辐亮度值低于100 W·m-2·Sr-1时对人眼属于无危害类型,正常使用情况下不会对人眼造成伤害,但是应该注意对特殊人群(小孩)的保护,避免长时间直视光源。灯具富蓝化也会影响人的作息规律,因此色温4 000 K以下,显色指数80的LED灯具适合在室内使用,同时还要根据不同的使用距离选择不同的参数的灯具。  相似文献   
48.
作为下一代固态照明光源,白光有机电致发光二极管(white organic light-emitting diodes, WOLEDs)由于其高效、节能、环保等特点,已经引起了广泛的关注,将其用做照明光源的研究和应用也取得了长足的发展。文中首先简述了WOLEDs的发光原理,总结了目前常见的WOLEDs的结构和常用的发光材料,重点介绍了多发射层白光器件、多重掺杂单发射层白光器件、基于激基缔合物和激基复合物发射的白光器件、p-i-n结构的白光器件等器件结构的发光机理及其优缺点。本文依据WOLEDs高效率、高亮度、高显色性、长寿命的实用条件,详细解释了器件效率,色纯度,相关色温和器件寿命等性能评价标准。我们还分析了WOLEDs目前亟需解决的技术瓶颈,并针对器件效率和器件寿命两个主要方面提出了相应的改善方案。介绍了世界上照明用WOLEDs各公司的研究进展并对其市场前景做出了展望。  相似文献   
49.
In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-nm BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.  相似文献   
50.
Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B_0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B_0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号