首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  国内免费   72篇
化学   77篇
晶体学   1篇
力学   1篇
物理学   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   10篇
  2012年   2篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   15篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   13篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
11.
利用DSC和TG/DTG法研究了1-氨基-1-肼基-2,2-二硝基乙烯(AHDNE)热分解行为及分解动力学,第一热分解过程的动力学方程为: ,其热爆炸临界温度为98.16 ºC。同时,利用微量热法测定了AHDNE的比热容,298.15K时的标准摩尔比热容为211.86 J•mol-1•K-1。计算得到了AHDNE的绝热至爆时间为59.21 s。AHDNE是不稳定的,其热稳定性远低于母体化合物FOX-7。  相似文献   
12.
采用银镜法和水热法制备了两种纳米Ag/CNTs(碳纳米管)复合材料, 利用傅里叶变换红外(FTIR)光谱、粉末X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜及能量散射光谱仪(SEM-EDS)对复合物的物相、组成、形貌和结构进行分析表征, 并运用差示扫描量热法(DSC)研究了纳米Ag/CNTs 复合材料对环三亚甲基三硝胺(RDX)热分解特性的影响. 结果表明: 纳米Ag 以10-80 nm的不规则球形“粘附”于纳米CNTs 表面,分散较均匀, 水热法制得的复合物表面纳米Ag较大、且负载的Ag粒子较多; 纳米Ag/CNTs 复合材料的加入改变了RDX的热分解过程, 使原有占主导的液相分解变为二次的气相反应加剧, RDX主分解峰形发生了明显的改变; 纳米Ag/CNTs 复合材料对RDX热分解的催化主要表现为分解温度的降低.  相似文献   
13.
废塑料-煤共处理液化的研究进展   总被引:6,自引:0,他引:6  
煤和废塑料共处理液化是一种新的煤直接液化技术,它的主要特点是利用废塑料作为主要的氢来源,本文介绍了目前已取得的一些主要进展,并指出了下一步工作的方向。  相似文献   
14.
复合纳米粒子;共沉淀法;热分解;纳米SnO2-CuO粉体的制备、表征及对环三次甲基三硝胺热分解的催化性能  相似文献   
15.
应用Micro-DSCⅢ微热量仪对3,4-二硝基呋咱基氧化呋咱(DNTF)进行比热容测定, 得到了DNTF比热容随温度变化的线性方程定压cp=0.31064+2.109×10-3T (285 K相似文献   
16.
A method of estimating the kinetic parameters and the critical rate of temperature rise in the thermal explosion for the autocatalytic decomposition of 3,4-bis(4'-nitrofurazan-3'-yl)-2-oxofurazan (BNFOF) with non-isothermal differential scanning calorimetry (DSC) was presented. The rate equation for the decomposition of BNFOF was cstablished, and information was obtained on the rate of temperature increase in BNFOF when the empiric-order autocatalytic decomposition was converted into thermal explosion.  相似文献   
17.
The nanoparticle Pb(Ⅱ)-Phtalate complex was synthesized by liquid dispersion deposition method using Pb(Ac)2·3H2O and potassium acid phthalate as the reactant. The nanoparticle complexes were characterized with TEM, XRD, TG, DSC and IR. The composition of the nanoparticle PbPht complex was determined by chemical and elemental analysis. The catalytic performance of nanoparticle complex on the combustion of RDX-CMDB propellant was investigated. The results showed the average particle size of complex were about 50 nm. The nanoparticle Pb(Ⅱ)-Phtalate complex can enhance burning-rate of propellant by 135%, and lower the pressure exponent by 74%.  相似文献   
18.
纳米复合氧化物CuO·SnO2的制备与结构表征   总被引:3,自引:0,他引:3  
0引言由于纳米材料在热学、电学、磁学、光学等方面具有的独特性能,使其在新功能材料、催化、光电能转换等许多领域引起了人们浓厚的研究兴趣[1]。近年来,纳米催化剂对固体推进剂的燃烧性能影响研究已成为热点[2~9]。但是由于固体推进剂燃烧的特殊性,要求不仅提高燃速,而且降低压力指数,因此并非所有的纳米催化剂都是有效的。大量实践已证明[10],多种催化剂的复合使用,将可获得远远优于单一催化剂的效果。研究已发现[11],纳米复合氧化物是由多种元素复合而成,使其在结构和性能上得到互补和叠加,加上纳米粒子所具有的各种效应,从而产生独特…  相似文献   
19.
水合氯化镧与二乙氨基荒酸二乙铵配合行为的热化学   总被引:1,自引:0,他引:1  
在干燥氮气气氛下,以无水乙醇为溶剂,制备了低水合氯化镧与二乙氨基荒酸 二乙铵(D-DDC)的配合物,确定其组成为Et_2NH_2[La(S_2CNEt_2)_4]。用微量热 法测定了298.15 K下水合氯化镧和D-DDC在无水乙醇中的溶解焓和不同温度下二乙 氨基荒酸镧液相生成反应的焓变。在实验和计算基础上,得到了液相生成反应的热 力学参数(活化焓、活化熵和活化自由能)、速率常数和动力学参数(表现活化能 、频率因子和反应基数),通过合理的热化学循环,求得了标题固相反应的焓变。  相似文献   
20.
1,3,3-三硝基氮杂环丁烷的热安全性   总被引:3,自引:0,他引:3  
借助不同加热速率(β)的非等温DSC曲线离开基线的初始温度(T0)、onset温度(Te)和峰顶温度(Tp), Kissinger法和Ozawa法求得的热分解反应的表观活化能(Ek和EO)和指前因子(Ak), Hu-Zhao-Gao方程ln βi=ln[A0/(be0 or p0G(α))]+   be0 or p0Tei or pi求得的be0 or p0, Zhao-Hu-Gao方程ln βi=ln[A0/((ae0 or p0+1)G(α))]+(ae0 or p0+1) ln Tei or pi求得的ae0 or p0, 微热量法确定的比热容(Cp), 以及密度(ρ)、热导率(λ)和分解热(Qd, 取爆热之半)数据, Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式、Zhao-Hu-Gao公式、Smith方程、Friedman公式和Bruckman-Guillet公式, 计算了TNAZ在β→0时的T0, Te和Tp值(T00, Teo和Tp0)、热爆炸临界温度(Tbe和Tbp)、绝热至爆时间(tTlad)、撞击感度50%落高(H50)和热点起爆临界温度(Tcr), 得到了评价TNAZ热安全性的结果: TSADT=Te0=485.81 K, Tp0=497.38 K, Tbeo=499.50 K, Tbp0=513.45 K, tTlad=8.90 s (n=0), tTlad=8.96 s (n=1), tTlad=9.01 s (n=2), H50=28.88 cm, Tcr=641.46 K (Troom=293.15 K), Tcr=658.89 K (Troom=300 K), 表明: (1) TNAZ对热是稳定的; (2)撞击感度好于环三亚甲基三硝胺(RDX); (3)热点起爆临界温度高于RDX, 而界于1,3,5-三氨基-2,4,6-三硝基苯(TATB)和六硝基茋(HNS)之间.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号