首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   141篇
  国内免费   94篇
化学   114篇
晶体学   1篇
力学   63篇
综合类   5篇
数学   36篇
物理学   288篇
  2024年   1篇
  2023年   7篇
  2022年   5篇
  2021年   2篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   23篇
  2013年   26篇
  2012年   11篇
  2011年   14篇
  2010年   22篇
  2009年   19篇
  2008年   15篇
  2007年   20篇
  2006年   27篇
  2005年   25篇
  2004年   26篇
  2003年   24篇
  2002年   21篇
  2001年   9篇
  2000年   22篇
  1999年   14篇
  1998年   21篇
  1997年   10篇
  1996年   9篇
  1995年   5篇
  1994年   15篇
  1993年   3篇
  1992年   4篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1965年   1篇
  1962年   1篇
排序方式: 共有507条查询结果,搜索用时 265 毫秒
91.
核磁共振测井仪探头设计中的数值方法   总被引:1,自引:0,他引:1       下载免费PDF全文
胡海涛  肖立志  吴锡令 《物理学报》2012,61(14):149302-149302
核磁共振测井仪探头的优化设计能够增强仪器的探测特性,提高仪器的信噪比, 而探头设计中的数值方法对设计结果至关重要.本文利用电磁场有限元方法对贴井壁型核磁共振测井仪探头静磁场和射频场进行了2D和3D的数值模拟,深入分析了数值模型形状、模型尺寸、 单元形状对数值模拟结果的影响,并将有限元数值模拟结果与实测数据做了对比. 结果显示:数值模拟结果与实测数据符合.在设计核磁共振测井仪探头结构时, 选取与井眼形状一致的圆形模型,模型尺寸范围在10—15倍探头外径, 并采用三角形单元可以有效提高数值模拟方法精度,增强优化设计结果的可靠性.  相似文献   
92.
针对用于快速传递对准的卡尔曼滤波器阶数高,计算量大,滤波更新率低,鲁棒性差及对准精度不高等问题,提出采用联合强跟踪Kalman滤波器进行快速传递对准。文中设计了联合强跟踪Kalman滤波器的结构和算法,同时利用改进的Elman网络进行信息分配系数的自适应调节,以实现融合信息在各子系统中的自适应分配。仿真结果表明,该滤波器不仅提高了解算速度,而且提高了系统鲁棒性和对准精度。  相似文献   
93.
94.
振动轮式微机械陀螺仪存在两个主要的工作模态 :驱动模态和敏感模态。本文研究了敏感模态反馈控制环节对系统工作性能的影响。提出刚度、阻尼组合反馈的模态控制思想 ,探讨了利用刚度反馈控制敏感模态的固有谐振频率 ,利用阻尼反馈控制系统检测范围的多参量控制方法 ;并对敏感模态中刚度反馈校正环节和阻尼反馈的校正环节进行了详细的分析 ,建立了系统对两个校正环节在增益和相位上的要求。  相似文献   
95.
Grid-enhanced plasma source ion implantation (GEPSII) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N_2^+ and atomic ions N^+ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSII process, which is an extension of our previous calculations in which only N_2^+ was considered. Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N^+ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.  相似文献   
96.
在1.5K低温和0~9T的高磁场下研究了AlGaG/GaN异质结二维电子气的磁输运性质.实验结果在4块样品中都观察到了Shubnikov-da HaSS振荡的双周期行为.表明异质结的三角势阱中有两个子带被电子占据.通过电子子带占据时电子浓度分配的线形行为得到第二子带被占据的阈值浓度为7.2×1012cm-2.通过对不同样品量子散射时间和输运迁移率的研究,说明在1.5K下远程离化施主散射在量子散射时间中起主要作用.  相似文献   
97.
为研究W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶板的侵彻释能特性,采用高速摄影弹道枪侵彻实验和能量方程、Avrami-Erofeev方程理论分析的方法,对破片的侵彻释能过程、侵彻规律、释能规律进行了研究。结果表明,破片在撞击并贯穿靶板的过程中激发了材料的燃烧反应,在靶板前方和后方产生了明显火光,随着撞击速度增加,火光范围增加、亮度提高;破片撞击速度、冲塞体速度的关系符合采用能量法推导的包含质量损失的破片侵彻公式,破片理论弹道极限速度为987.1 m·s?1;在实验速度范围内,材料反应效率随着冲击压力的增加而增加,与实验现象吻合。  相似文献   
98.
为研究Zr 基非晶合金动态压缩条件下的失效释能机理,采用力学试验机、霍普金森杆、高速摄影、差示扫描量热分析(differential scanning calorimetry, DSC)、扫描电镜(scanning electron microscope, SEM)等,得到了材料应力应变曲线、高速摄影图像、失效式样微观形貌及DSC 曲线,根据实验数据计算了材料的晶化激活能,并拟合了材料的JH-2(Johnson-Holmquist Ⅱ)模型,对材料动态失效过程进行有限元数值模拟。实验结果表明,压缩条件下材料为脆性断裂,断口处观察到典型的脉状纹样及液滴状结构,材料失效过程伴随着释能现象;数值模拟结果表明,材料裂纹局部的瞬时内能大于材料晶化激活能。动态压缩下材料的失效释能机理即为材料破碎释放储存的弹性势能,并导致材料局部晶化释能,释能强度与应变率成正相关。  相似文献   
99.
以3,4-吡唑二甲酸(H3pdc)为配体分别与氯化铜、氯化镍反应,得到了2个过渡金属配合物:[M(H2pdc)2(H2O)2]·2H2O(M=Cu(1)和Ni(2)),用元素分析、红外光谱、X-单晶衍射结构分析、热重分析和荧光分析对其进行了表征。晶体结构分析表明配合物1和2均为单核结构,金属离子与来自2个H2pdc-中的2个N原子和2个羧基O原子,以及2个水分子中的2个O原子配位,形成六配位的八面体构型。配合物1和2中的独立结构单元[M(H2pdc)2(H2O)2]·2H2O通过3种分子间氢键(O-H…O,N-H…O和C-H…O)形成三维(3D)空间结构;此外我们还研究了配合物1和2的热稳定性和荧光性质。  相似文献   
100.
在4-甲基咪唑/三氮唑存在下,利用四氟对苯二甲酸为配体、与Pb(NO3)2作用,得到了2种配位聚合物{[Pb(tfbdc)(H2tfbdc)0.5]·(4-MI)·(H2O)}n(1)和{[Pb(tfbdc)(H2O)2]}n(2)(H2tfbdc=四氟对苯二甲酸,4-MI=4-甲基咪唑),并用红外光谱、元素分析和X-单晶衍射对其进行了表征。化合物1属于单斜晶系,空间群为P21/n,化合物2属于三斜晶系,空间群为P1。配合物1中,铅离子依靠正常的Pb-O键和次级键Pb…O,与7个氧原子配位;tfbdc2-阴离子和H2tfbdc分别采用不同的配位方式桥联铅离子,导致1个具有孔道的三维结构的形成。而4-甲基咪唑和游离水分子通过氢键作用嵌在这三维结构的孔道中。π-π堆积作用的存在增强了1的稳定性。配合物2中,铅离子是位于8个氧原子的配位环境中,tfbdc2-阴离子以螯合和桥联的方式与铅离子作用,导致1个二维层状结构的形成。此外还考察了1和2的热稳定性和固体荧光性质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号