排序方式: 共有76条查询结果,搜索用时 12 毫秒
11.
研究了Pd部分替代Mg对Mg0.9-xTi0.1PdxNi(x=0.04~0.1)贮氢合金腐蚀性能的影响.利用机械合金化方法制备了Mg0.9-xTi0.1PdxNi(x=0.04~0.1)贮氢合金.XRD和TEM分析表明经120 h球磨后该合金完全非晶化.循环充放电测试结果表明,Pd的替代有效地延长了Mg0.9-xTi0.1PdxNi(x=0.04~0.1)合金的循环寿命.采用开路电位测量,阳极极化,电化学阻抗和X射线光电子能谱研究了该合金的腐蚀行为.结果表明,随着Pd含量增加,合金腐蚀电位正移,初始腐蚀电流下降,腐蚀电流增加的速度变缓.采用本文提出的等效电路模型较好地拟合了合金的电化学阻抗谱.分析表明,随着Pd含量的增加,合金表面钝化膜厚度和电阻逐渐增大.X射线光电子能谱分析表明,Pd的加入减弱了合金在充放电过程中的氧化程度.当Pd含量达到0.1时,Mg0.9-xTi0.1PdxNi(x=0.04~0.1)合金的耐腐蚀性能最好,其放电容量保持率最高. 相似文献
12.
13.
在(298.15 ±0.01) K下用转动弹热量计测定了离子液体硫酸乙酯-1-甲基-3-乙基咪唑(EMIES)及合成它的原料1-甲基咪唑的恒容燃烧热,通过计算得到它们的标准燃烧焓 分别为(-2671±2) 和(-286.3±0.5) kJ·mol-1;标准生成焓 分别为(-3060±3) kJ·mol-1和(-2145±4) kJ·mol-1.结合文献上硫酸二乙酯的标准生成焓数据,得到了合成离子液体EMIES的反应热(-102.3±1.0) kJ·mol-1,与合成实验中观察到的强烈放热现象是一致的.根据离子液体EMIES的热容数据,计算了不同温度下EMIES的标准生成焓. 相似文献
14.
15.
以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究 总被引:2,自引:0,他引:2
以新亚甲基蓝(NMB) 为电子媒介体, 大肠杆菌为微生物催化剂, 设计了微生物燃料电池(MFC). 该MFC的开路电压为0.760 V, 短路电流为1.108 mA, 最大输出功率为116 mW/m2, 此时所对应的电流密度为390 mA/m2. 比较了中性红(NR)和NMB作为电子媒介体对MFC性能的影响. 实验结果表明, 以NMB为电子媒介体的MFC的开路电压比以NR为电子媒介体的MFC的开路电压低, 但其开路电压达到稳定所需要的时间更短, 而且其短路电流比后者高. 当放电电流大于114 mA/m2时, 前者比后者的输出功率高, 在负载1000 Ω放电时, 前者比后者有更好的稳定性. 相似文献
16.
目前,化石能源日益枯竭和二氧化碳排放导致的温室效应引起了世界各国的高度关注。约五分之一的二氧化碳是由使用化石燃料的交通工具所导致的。氢能是人类至今为止已知的、最为理想的清洁能源,使用零排放的氢燃料电池驱动交通工具是减少二氧化碳排放的有效手段之一。世界各国把氢能作为战略能源进行研究,我国既是能源短缺国,又是能源消耗最大的国家之一。《国家中长期科学和技术发展规划纲要》明确指出,能源是未来15年我国科技发展的重要领域,清洁能源低成本规模化开发利用则是重点领域和优先主题。
本文将将简要介绍课题组在铝基材料制氢技术、多孔金属有机框架化合物(MOFs)材料储氢技术、基于石英微天平的氢气安全检测技术和生物燃料电池的有关研究工作。 相似文献
17.
用精密自动绝热量热计测定了自行合成并提纯的4,6-二甲氧基-2-嘧啶氨基甲酸甲酯在80~380 K温区的摩尔热容.实验结果表明,在345~360 K温区,该化合物有一固-液熔化过程.经两次重复测定,得其熔化温度、摩尔熔化焓以及熔化熵分别为:(357.201±0.080) K, (26.289±0.029) kJ·mol-1和(73.597±0.070) J·mol-1·K-1.通过分步熔化法得到该物质绝对纯样品的熔点为357.449 K.根据热力学关系和热容数据,计算出了该化合物相对于标准参考温度298.15 K的热力学函数.用DSC和TG热分析技术在300~500 K温区对该物质的热力学性质作了进一步研究,得到与绝热量热法一致的固-液熔化过程热力学参数,并得到该化合物蒸发过程的热力学参数:沸点为488.06 K,摩尔蒸发焓为81.73 kJ·mol-1. 相似文献
18.
19.
在水-乙醇混合体系中, 将浓硝酸硝化的Sm2O3与1,10-邻菲啰啉反应, 用冰醋酸调节pH≈4, 形成醋酸根桥联的双核钐配合物[Sm2(CH3COO)4(NO3)2(phen)2](phen=1,10-邻菲啰啉), 用元素分析、红外光谱和核磁共振谱等进行了表征, 并用X射线衍射测定了配合物的晶体结构, 此外, 对配合物进行了非等温热分解动力学研究. 该晶体属于三斜晶系, P1空间 群, 晶胞参数a=0.979 6(3) nm, b=0.981 3(4) nm, c=1.127 3(4) nm, α=106.666(5)°, β=113.034(5)°, γ=102.656(5)°, V=0.885 4(5) nm3, Z=1, μ=3.361 mm-1, Dc=1.915 g/cm3, F(000)=498, R1=0.059 6, wR2=0.144 8. 该配合物是双核分子, 2个Sm(Ⅲ)离子通过4个醋酸根的羧基桥联, 每个中心离子分别与周围5个来自羧基的桥氧原子、 一个硝酸根的两个氧原子和一个邻菲啰啉分子中的两个氮原子配位, 形成九配位扭曲多面体. 非等温热分解动力学研究结果表明, 配合物第一步热分解反应可能为二级反应, 其动力学方程为dα/dT=A/[βe-E/RT(1-α)2], 分解反应的表观活化能为344.84 kJ/mol, 指前因子lnA=66.52. 相似文献
20.
用精密自动绝热量热计测定了重铬酸钾晶体在100~390 K温区内的摩尔热容.实验结果表明在研究温度区间内重铬酸钾无相变和其它热反常现象发生,但其热容在不同的温度范围表现出不同的变化趋势.在100 K≤ T ≤ 275 K和350 K≤ T ≤390 K区间内,其热容随温度的升高明显增大,在275 K≤ T ≤350 K区间,其热容约为定值.将重铬酸钾摩尔热容实验值Cp,m(J•K-1•mol-1)拟合成温度T的多项式方程,在100 K≤ T ≤275 K,为Cp,m=0.0050T2-1.0320T+125.22; 275 K≤ T ≤ 350 K,为Cp,m=209.37; 350 K≤ T ≤390 K,为Cp,m= 0.0266T2-18.823T+3542.3.根据热力学函数关系式,从热容值计算出了298.15 K~ 400 K温区范围内每隔5 K的热力学函数值. 相似文献