首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   142篇
  国内免费   157篇
化学   302篇
晶体学   11篇
力学   79篇
综合类   23篇
数学   76篇
物理学   349篇
  2024年   6篇
  2023年   25篇
  2022年   30篇
  2021年   27篇
  2020年   25篇
  2019年   29篇
  2018年   23篇
  2017年   15篇
  2016年   22篇
  2015年   23篇
  2014年   38篇
  2013年   26篇
  2012年   29篇
  2011年   38篇
  2010年   32篇
  2009年   35篇
  2008年   31篇
  2007年   40篇
  2006年   28篇
  2005年   35篇
  2004年   30篇
  2003年   23篇
  2002年   19篇
  2001年   15篇
  2000年   25篇
  1999年   18篇
  1998年   12篇
  1997年   8篇
  1996年   15篇
  1995年   12篇
  1994年   7篇
  1993年   13篇
  1992年   12篇
  1991年   3篇
  1990年   9篇
  1989年   4篇
  1988年   7篇
  1987年   11篇
  1986年   2篇
  1985年   10篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   8篇
  1979年   2篇
  1978年   1篇
  1965年   2篇
  1964年   1篇
  1960年   1篇
  1958年   1篇
排序方式: 共有840条查询结果,搜索用时 15 毫秒
11.
荧光金属纳米簇用于荧光分析时通常不具有选择性,限制了其传感应用。本研究合成了一种将金纳米簇(AuNCs)定位在沸石咪唑酯骨架-8(ZIF-8)表面的纳米复合物(AuNCs/ZIF-8),将其用于特异性检测MnO-4。采用透射电子显微镜(TEM)、扫描电子显微镜和傅里叶变换红外光谱证明在此纳米复合物中,AuNCs通过配位作用固定在ZIF-8的外表面。与单独的AuNCs相比,此纳米复合物提高了AuNCs的光致发光强度,消除了Cu2+和Hg2+的干扰,对MnO-4显示出优异的"Turn off"选择性。紫外-可见吸收光谱和TEM结果表明,MnO-4对AuNCs/ZIF-8纳米复合物的传感机理基于荧光内滤效应。AuNCs/ZIF纳米复合物的猝灭与MnO-4浓度在1~30μmol/L范围内有良好的线性关系,检出限低至0.64μmol/L。  相似文献   
12.
利用金属丝电爆炸物理数学模型对电爆炸物理过程开展了数值模拟,研究了不同直径铝丝电爆炸特性,进一步分析了金属丝内沉积能量、电压击穿时刻、电压峰值随金属丝直径的变化规律,并与相关实验数据作了对比。  相似文献   
13.
报道了一种宽温度适应范围的微型化人眼安全激光器。采用中心波长940 nm的二极管作为泵浦源,Er3+/Yb3+共掺磷酸盐玻璃作为增益介质,Co2+: MgAl2O4作为被动调Q晶体,研究了微型激光器的结构和激光在宽温度范围下的输出特性。当泵浦能量9 mJ,重复频率10 Hz,泵浦脉宽5 ms时,获得了单脉冲能量130 J,脉宽5.5 ns,峰值功率大于20 kW的激光输出,光束质量因子为1.3。采用真空封装工艺,在-40~50 ℃温度范围内,自然冷却方式下激光器稳定输出,功率不稳定性波动小于5%。  相似文献   
14.
曹晴  李东  姜艳霞  戚克振  张满杰 《分析化学》2022,50(8):1205-1216
制备了双面神(Janus)结构的聚多巴胺/聚丙烯酸-氢氧化铜纳米粒子(PDA/PAA-Cu(OH)2 JNPs)。PDA在近红外(NIR)区有较强的吸收,并且具有优异的生物相容性和可降解性;PAA纳米球与铜离子(Cu2+)配位后形成的PAA-Cu(OH)2纳米粒子具有介孔结构,可用于装载抗癌药物;Cu(OH)2在NIR区有较强的吸收,可用于光热治疗,实现不同功能有机融合,展现协同增效。选用亲水的阿霉素(DOX)作为药物模型,研究了此药物递送系统对肿瘤细胞(HepG-2)的抑制效果。合成的双面神纳米粒子具有高的药物(阿霉素)装载能力(药物负载容量=0.87 mg/mg)、良好的光热转换效率(45.9%)、 pH/近红外(NIR)双重响应药物释放性质和光声(PA)成像能力,可用于体外PA影像和化疗-热疗协同癌症治疗。体外毒性实验结果表明,DOX负载的PDA/PAA-Cu(OH)2 JNPs加激光组呈现明显的癌细胞死亡,细胞存活率极低(7.9%)。  相似文献   
15.
二维金属有机框架材料(MOFs)由于具备高比表面积、 多孔性以及丰富的活性位点等优异特性而受到广泛关注, 并且在电催化领域展现出巨大的应用潜力. 研究者们已在二维MOFs的可控制备与电催化性能调控方面取得许多突破性进展, 显示出相关研究对开发高性能电催化剂的关键作用. 本文总结了二维MOFs的自上而下和自下而上合成策略以及二维MOFs衍生物的典型合成方法, 概述了二维MOFs在各尺度下的电催化性能调控策略, 并介绍了各种合成方法和调控策略在电催化中的应用. 最后讨论了该领域面临的挑战, 并对未来的发展方向进行了展望.  相似文献   
16.
 用X-射线衍射、动态力学测定等手段研究了不同拉伸倍数的超高分子量聚丙烯薄膜的力学性能的变化.以X-射线衍射法并基于串联力学模型的假设得到的各样品的表观晶区模量Ecapp约为34-38GPa.样品模量E_b随拉伸倍数增加而逐渐增大,其变化趋势与非晶区取向因子的变化相类似,说明非晶区取向是左右样品模量的重要因素.室温下,69倍拉伸样品的模量为27GPa,约为表观结晶模量的3/4,且其值在-150-160℃的温度范围内没有急剧变化,说明超拉伸明显改善了材料的力学性能及热稳定性.在各拉伸样品中,考虑伸直链结晶生成的可能性,利用并串联力学模型对伸直链结晶的体积分数做了估算,并对X-射线衍射法所得表观结晶模量进行了修正,认为室温下聚丙烯的真正晶区模量约为47GPa.  相似文献   
17.
1 MeV电子辐照对短波Hg1-xCdxTe光伏探测器的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
 研究了1 MeV电子辐照对短波Hg1-xCdxTe光伏探测器的影响。通过测试电子辐照前后光伏探测器的响应光谱、信号、噪声、暗电流等性能参数,分析了电子辐照对HgxCdxTe光伏器件的影响机制。实验结果发现:电子辐照后器件响应光谱在短波处有变窄的趋势,但响应峰值波长和截止波长基本无变化;随着辐照剂量的增加,通过p-n结的暗电流有所增加,光伏器件的探测率有减小的趋势。  相似文献   
18.
乙酰化淀粉的塑化和性能研究   总被引:6,自引:0,他引:6  
以乙酰化改性淀粉为基体,甘油为增塑剂,利用哈克旋转流变仪密炼制备热塑性乙酰化淀粉.实验结果表明制备热塑性乙酰化淀粉的甘油/乙酰化淀粉配比应大于30/100(W/W),且随甘油含量增加,热塑性乙酰化淀粉的脆性降低.动态机械热分析(DMTA)显示热塑性乙酰化淀粉包含富甘油和富淀粉两相,乙酰化淀粉和甘油为部分互溶.流变学分析显示淀粉分子间作用力非常强,表现为类固态行为.同时本文对材料的热稳定性进行了初步研究.  相似文献   
19.
白色荧光粉NaGd(MoO42:Dy3+,Eu3+的水热合成及发光性能   总被引:1,自引:0,他引:1  
采用谷氨酸辅助水热法合成了八面体形NaGd(MoO4)2:Dy3+,Eu3+白色荧光粉.X射线衍射结果表明,合成的样品为四方晶系的NaGd(MoO4)2纯相.扫描电子显微镜照片显示所制备的粒子为八面体形,各边长约为2μm.荧光光谱结果表明,在NaGd(MoO4)2:4%Dy3+,yEu3+(y=0,0.5%,0.6%,0.7%,0.8%,0.9%,1.0%)样品中,随着Eu3+掺入量的增加,Dy3+的发射峰逐渐减弱,而Eu3+的发射峰逐渐增强,说明Dy3+-Eu3+之间存在能量传递.通过色坐标图可知,当Eu3+掺杂量y=0.9%时,荧光粉的色坐标(0.338,0.281)与标准的白光色坐标(0.33,0.33)接近,表明NaGd(MoO4)2:4%Dy3+,0.9%Eu3+是很好的近紫外光激发下的白色荧光粉.  相似文献   
20.
将双极性半导体钝化膜空间电荷电容等效为钝化膜/溶液界面处电容和内层钝化膜/外层钝化膜界面处的np结电容的串联, 根据前期研究建立的半导体富集态、耗尽态以及反型态空间电荷电容的统一计算公式, 给出了双极性钝化膜Mott-Schottky(M-S)曲线的非线性拟合方法. 并将这一方法应用于镍基合金G3高温高压H2S/CO2腐蚀后的钝化膜半导体特征研究. M-S曲线非线性拟合结果显示, 温度升高外层p型半导体钝化膜多数载流子浓度明显增高, 而内层n型半导体钝化膜的多数载流子浓度基本未变. 通过非线性拟合, 证明本文所给出的M-S曲线非线性拟合方法能够同时给出钝化膜内外层多个半导体性质参数,为揭示钝化膜形成及破坏机制提供更多信息. 结合X射线光电子能谱(XPS)分析, 讨论了钝化膜结构变化机制及np结在抑制腐蚀过程中的作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号