全文获取类型
收费全文 | 54篇 |
免费 | 3篇 |
国内免费 | 16篇 |
专业分类
化学 | 52篇 |
数学 | 5篇 |
物理学 | 16篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2021年 | 3篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 8篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 2篇 |
2013年 | 1篇 |
2012年 | 5篇 |
2011年 | 1篇 |
2010年 | 2篇 |
2009年 | 2篇 |
2008年 | 9篇 |
2007年 | 2篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 6篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
排序方式: 共有73条查询结果,搜索用时 4 毫秒
71.
研究了纳米相氟氧化物玻璃陶瓷中Er~(3+)Yb~(3+)离子对的量子剪裁发光造成的强的光谱调制现象。测量了Er~(3+)Yb~(3+)双掺纳米相氟氧化物玻璃陶瓷的X射线衍射谱、表面形貌、激发光谱、吸收光谱、和发光光谱;而且也与Tb~(3+)Yb~(3+)双掺纳米相氟氧化物玻璃陶瓷的相对应的光谱参数进行了比较。发现378nm光激发样品(A)Er(1%)Yb(8.0%)∶FOV和样品(B)Er(0.5%)Yb(3.0%)∶FOV所导致的652.0nm红色发光强度为522nm光激发时的680.85倍和303.80倍;我们还发现378nm光激发所导致的样品(A)Er(1%)Yb(8.0%)∶FOV和样品(B)Er(0.5%)Yb(3.0%)∶FOV的652.0nm红色发光强度为样品(C)Er(0.5%)∶FOV的491.05和184.12倍。我们还发现在378nm光激发时的样品(A)Er(1%)Yb(8.0%)∶FOV和样品(B)Er(0.5%)Yb(3.0%)∶FOV的{978.0和1 012.0nm}红外发光强度依次分别为样品(C)Er(0.5%)∶FOV的{58.00和293.62}倍和{25.11和67.50}倍。更进一步,对于652.0nm波长发光的激发谱,发现(A)Er(1%)Yb(8.0%)∶FOV和(B)Er(0.5%)Yb(3.0%)∶FOV的378.5nm激发谱峰强度是(C)Er(0.5%)∶FOV的大约606.02和199.83倍。同时,也发现样品(A)Er(1%)Yb(8.0%)∶FOV和样品(B)Er(0.5%)Yb(3.0%)∶FOV的一级量子剪裁红外1 012或978nm发光强度为样品(D)Tb(0.7%)Yb(5.0%)∶FOV的二级量子剪裁红外976nm发光强度的101.38和29.19倍。发现的该量子剪裁是目前所报道的最强的量子剪裁。因此,相信所发现的氟氧化物纳米玻璃陶瓷中Er~(3+)Yb~(3+)离子对的一级量子剪裁发光是强的可以作为量子剪裁层应用到提高晶硅太阳能电池的发电效率。研究结果也能加速对目前国际热点的下一代环保的光谱调制太阳能电池的探索。 相似文献
72.
基于点击化学反应与微流控芯片构建了检测范围可调节的多元免疫传感器。利用点击化学反应可控自组装合成了辣根过氧化物酶纳米复合物,通过控制在不同抗体上点击化学配体的数量,在不同抗体上可控标记不同数量的纳米酶复合物,将标记不同数量酶的抗体与微流控芯片相结合构建了一种检测范围从pg·mL~(-1)~μg·mL~(-1)的检测范围可调的新型免疫传感器。构建的检测方法为临床样本中痕量标志物及高浓度标志物的同时准确检测提供了可能,它在现场即时检测中有着良好的应用前景。 相似文献
73.