首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1749篇
  免费   73篇
  国内免费   2篇
化学   897篇
晶体学   26篇
力学   102篇
数学   432篇
物理学   367篇
  2024年   7篇
  2023年   19篇
  2022年   22篇
  2021年   20篇
  2020年   48篇
  2019年   53篇
  2018年   65篇
  2017年   57篇
  2016年   101篇
  2015年   70篇
  2014年   91篇
  2013年   294篇
  2012年   78篇
  2011年   67篇
  2010年   62篇
  2009年   62篇
  2008年   45篇
  2007年   50篇
  2006年   64篇
  2005年   22篇
  2004年   38篇
  2003年   19篇
  2002年   30篇
  2001年   32篇
  2000年   19篇
  1999年   27篇
  1998年   22篇
  1997年   28篇
  1996年   20篇
  1995年   18篇
  1994年   22篇
  1993年   14篇
  1992年   11篇
  1990年   10篇
  1989年   8篇
  1988年   13篇
  1987年   9篇
  1985年   15篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   14篇
  1980年   13篇
  1979年   9篇
  1978年   7篇
  1977年   6篇
  1975年   10篇
  1974年   6篇
  1971年   5篇
  1927年   5篇
排序方式: 共有1824条查询结果,搜索用时 0 毫秒
51.
Secondary ion mass spectrometry (SIMS) is a well-known technique for 3D chemical mapping at the nanoscale, with detection sensitivity in the range of ppm or even ppb. Energy dispersive X-ray spectroscopy (EDS) is the standard chemical analysis and imaging technique in modern scanning electron microscopes (SEM), and related dual-beam focussed ion beam (FIBSEM) instruments. Contrary to the use of an electron beam, in the past the ion beam in FIBSEMs has predominantly been used for local milling or deposition of material. Here, we review the emerging FIBSIMS technique which exploits the focused ion beam as an analytical probe, providing the capability to perform secondary ion mass spectrometry measurements on FIBSEM instruments: secondary ions, sputtered by the FIB, are collected and selected according to their mass by a mass spectrometer. In this way a complete 3D chemical analysis with high lateral resolution <?50 nm and a depth resolution <?10 nm is attainable.We first report on the historical developments of both SIMS and FIB techniques and review recent developments in both instruments. We then review the physics of interaction for incident particles using Monte Carlo simulations. Next, the components of modern FIBSIMS instruments, from the primary ion generation in the liquid metal source in the FIB column, the focussing optics, the sputtered ion extraction optics, to the different mass spectrometer types are all detailed. The advantages and disadvantages of parallel and serial mass selection in terms of data acquisition and interpretation are highlighted, while the effects of pressure in the FIBSEM, acceleration voltage, ion take-off angles and charge compensation techniques on the analysis results are then discussed. The capabilities of FIBSIMS in terms of sensitivity, lateral and depth resolution and mass resolution are reviewed. Different data acquisition strategies related to dwell time, binning and beam control strategies as well as roughness and edge effects are discussed. Data analysis routines for mass identification based on isotope ratios and molecular fragments are outlined. Application examples are then presented for the fields of thin films, polycrystalline metals, batteries, cultural heritage materials, isotope labelling, and geological materials. Finally, FIBSIMS is compared to EDS, and the potential of the technique for correlative microscopy with other FIBSEM based imaging techniques is discussed.  相似文献   
52.
53.
As alternative hydrophobic adsorbent for DNA adsorption, supermacroporous cryogel disks were synthesized via free radical polymerization. In this study, we have prepared two kinds of cryogel disks: (i) poly(2‐hydroxyethyl methacrylate‐N‐methacryloyl‐l ‐tryptophan) [p(HEMA‐MATrp)] cryogel containing specific hydrophobic ligand MATrp; and (ii) monosize p(HEMA‐MATrp) particles synthesized via suspension polymerization embedded into p(HEMA) cryogel structure to obtain p(HEMA‐MATrp)/p(HEMA) composite cryogel disks. These cryogel disks containing hydrophobic functional group were characterized via swelling studies, Fourier transform infrared spectroscopy, elemental analysis, surface area measurements and scanning electron microscopy. DNA adsorption onto both p(HEMA‐MATrp) cryogel and p(HEMA‐MATrp)/p(HEMA) composite cryogels was investigated. Maximum adsorption of DNA on p(HEMA‐MATrp) cryogel was found to be 15 mg/g polymer. Otherwise, p(HEMA‐MATrp)/p(HEMA) composite cryogels significantly increased the DNA adsorption capacity to 38 mg/g polymer. Composite cryogels could be used repeatedly without significant loss on adsorption capacity after 10 repetitive adsorption–desorption cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
54.
In this article, extremely simple analytical formulas are obtained for rotational overlap integrals which occur in integrals over two reduced rotation matrix elements. The analytical derivations are based on the properties of the Jacobi polynomials and beta functions. Numerical results and special values for rotational overlap integrals are obtained by using symmetry properties and recurrence relationships for reduced rotation matrix elements. The final results are of surprisingly simple structures and very useful for practical applications. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   
55.
A cyclotriphosphazene substituted with six 3,5-bis(trifluoromethyl) benzyloxy units was designed as a novel 19F MRI contrast agent. The resulting molecule has 36 magnetically equivalent fluorine atoms and exhibited suitable MRI properties with high imaging sensitivity, confirming the proof-of-concept as a convenient scaffold for the production of new 19F MRI contrasts agents.  相似文献   
56.
In this work, the structural and transport properties of Mg-doped Sn-based alloys have been investigated. The temperature-dependent transport and structural properties of Sn–Mg alloys were investigated for five different samples (Pure Sn, Sn-1.0 wt% Mg, Sn-2.0 wt% Mg, Sn-6.0 wt% Mg and Pure Mg). Scanning electron microscopy (SEM), X-ray diffraction and energy dispersive X-ray analysis measurements were carried out in order to clarify the structural properties of the samples. It was found that the samples had tetragonal crystal symmetry, except for pure Mg which had hexagonal crystal symmetry. We also found that the cell parameters changed slightly with the addition of Mg element. The SEM micrographs of the samples showed that they had smooth surfaces with a clear grain boundary. The electrical and thermal conductivity of the samples were measured by four-point probe and the radial heat flow method, respectively. The electrical resistivity of the samples increased almost linearly with the increasing temperature. The thermal conductivity values ranged between 0.60 and 1.00 W/Km, while they decreased slightly with temperature and increased with Mg composition. The thermal conductivity values of the alloys were in between the values of pure Sn and Mg. The thermal conductivity results of the alloys were compared with other available results, and a good agreement was seen between the results. In addition, the temperature coefficients of electrical resistivity and thermal conductivity were determined; these were independent of the composition of the alloying elements.  相似文献   
57.
Efficient and modular syntheses of chiral 2-(2-hydroxyaryl)alcohols (HAROLs), novel 1,4-diols carrying one phenolic and one alcohol hydroxyl group, have been developed which led to generation of a small library of structurally diverse HAROLs in enantiomerically pure form. Of the different HAROLs examined, a HAROL based on the indan backbone exhibited the highest activity and enantioselectivity in the 1,2-addition of certain organometallic compounds to aldehydes in the presence of Ti(OiPr)4 (up to 97% y, 88% ee) and performed as a hydrogen-bond donor organocatalyst in the Morita-Baylis-Hillman reaction, promoted by trialkylphosphines.  相似文献   
58.
59.
60.
This article reports on the synthesis, characterization, and properties of various anthracene‐containing poly (p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) (PPE‐PPV) polymers (AnE‐PVs) bearing statistical distributions of various side chains. Primarily, the ratio of linear octyloxy and branched 2‐ethylhexyloxy side chains at the poly(p‐phenylene vinylene) (PPV) parts was varied, leading to the polymers stat, stat1, and stat2. Furthermore, polymers also containing asymmetric substituted PPV and poly(p‐phenylene ethynylene) units (bearing methoxy and 2‐ethylhexyloxy side chains) were prepared yielding stat3, stat4, and stat5. These materials exhibit a broad variation in their photovoltaic properties. It is once more shown that side chains and their distribution can crucially affect the photovoltaic device performance. The introduction of units with asymmetric substitution into these systems seems to be harmful for their utilization in photovoltaic applications. Organic field‐effect transistors were fabricated to investigate hole mobilities in these new materials. Large variance was observed, falling in the range of almost two orders of magnitude, indicating rather different π–π stacking behavior of the polymer backbones owing to side‐chain modifications. Moreover, a selection of the new polymeric systems was investigated regarding their potential for light‐emitting diode (LED) applications. Polymer LEDs using the polymers AnE‐PVstat, ‐stat3, ‐stat4, and ‐stat5, as the active layer showed turn‐on voltage of ~2 V and exhibited red light emission. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号