首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   19篇
物理学   5篇
  2013年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2001年   1篇
  2000年   1篇
  1985年   2篇
排序方式: 共有24条查询结果,搜索用时 484 毫秒
1.
The correlation between β2‐, β3‐, and β2,3‐amino acid‐residue configuration and stability of helix and hairpin‐turn secondary structures of peptides consisting of homologated proteinogenic amino acids is analyzed (Figs. 1–3). To test the power of Zn2+ ions in fortifying and/or enforcing secondary structures of β‐peptides, a β‐decapeptide, 1 , four β‐octapeptides, 2 – 5 , and a β‐hexadecapeptide, 10 , have been devised and synthesized. The design was such that the peptides would a) fold to a 14‐helix ( 1 and 3 ) or a hairpin turn ( 2 and 4 ), or form neither of these two secondary structures (i.e., 5 ), and b) carry the side chains of cysteine and histidine in positions, which will allow Zn2+ ions to use their extraordinary affinity for RS? and the imidazole N‐atoms for stabilizing or destabilizing the intrinsic secondary structures of the peptides. The β‐hexadecapeptide 10 was designed to a) fold to a turn, to which a 14‐helical structure is attached through a β‐dipeptide spacer, and b) contain two cysteine and two histidine side chains for Zn complexation, in order to possibly mimic a Zn‐finger motif. While CD spectra (Figs. 6–8 and 17) and ESI mass spectra (Figs. 9 and 18) are compatible with the expected effects of Zn2+ ions in all cases, it was shown by detailed NMR analyses of three of the peptides, i.e., 2, 3, 5 , in the absence and presence of ZnCl2, that i) β‐peptide 2 forms a hairpin turn in H2O, even without Zn complexation to the terminal β3hHis and β3hCys side chains (Fig. 11), ii) β‐peptide 3 , which is present as a 14‐helix in MeOH, is forced to a hairpin‐turn structure by Zn complexation in H2O (Fig. 12), and iii) β‐peptide 5 is poorly ordered in CD3OH (Fig. 13) and in H2O (Fig. 14), with far‐remote β3hCys and β3hHis residues, and has a distorted turn structure in the presence of Zn2+ ions in H2O, with proximate terminal Cys and His side chains (Fig. 15).  相似文献   
2.
Jones oxidation of Andrographolide (1), gave mixture of three products (3-dehydroandrographolide (5), 3,19-bis dehydroandrographolide (6) and 19-dehydroandrographolide (7). Tritylation of andrographolide at C19-OH resulted to products 8 and diene 9, which can be converted to its acetate 10 and oxidation product 11.  相似文献   
3.
Five related substances (impurities) were detected in lacidipine bulk drug substance by a simple high-performance liquid chromatographic method (HPLC) and were identified by liquid chromatography–mass spectrometry (LC-MS). These related substances were independently synthesized, characterized, and co-injected with the sample containing impurities.  相似文献   
4.
A rapid and sensitive gas chromatographic method using flame ionization detection (GC–FID) has been developed and validated for five process related non-chromophoric impurities viz, 2-(2-chloroethoxy)ethanol (2-CEE), piperazine, 2-(piperazin-1-yl)ethanol (HEP), 2-[2-(piperazin-1-yl)ethoxy]ethanol (HEEP), 2,2-[piperazine-1,4-diylbis(ethane-2,1-diyloxy)]diethanol (DEEP) observed during the process development of quetiapine hemifumarate, an antipsychotic drug is presented. All five non-chromophoric impurities ranging from 0.05 to 0.1% were detected using DB-5 (30 m × 0.53 mm, 5 μm) column with a good peak separation. The method was fully validated according to the ICH Q2 (R1) guidelines. The investigated validation protocols showed that the method has acceptable specificity, accuracy, linearity, precision, robustness and high sensitivity with detection limits and quantitation limits ranging from 0.001 to 0.01% and 0.004 to 0.03%, respectively. These non-chromophoric impurities generated during the process were identified by GC–MS and are characterized by MS, 1H NMR and FT-IR spectroscopy.  相似文献   
5.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   
6.
To further study the preference of the antiperiplanar (ap) conformation in α‐fluoro‐amide groups, two β‐peptides, 1 and 2 , containing a (2‐F)‐β3hAla and a (2‐F)‐β2hPhe residue, have been synthesized. Their NMR‐solution structures in CD3OH were determined and compared with those of non‐F‐substituted analogs, 3 and 4a . While we have found in a previous investigation (Helv. Chim. Acta 2005 , 88, 266) that a stereospecifically introduced F‐substituent in the central position of a βheptapeptide is capable of ‘breaking’ the 314‐helical structure by enforcing the F? C? C?O ap‐conformation, we could now demonstrate that the same procedure leads to a structure with the unfavorable ca. 90° F? C? C?O dihedral angle, enforced by the 314‐helical folding in a βtridecapeptide (cf. 1 ; Fig. 4). This is interpreted as a consequence of cooperative folding in the longer β‐peptide. A F‐substituent placed in the turn section of a β‐peptidic hairpin turn was shown to be in an ap‐arrangement with respect to the neighboring C?O bond (cf. 2 ; Fig. 7). Analysis of the non‐F‐substituted β‐tetrapeptides (with helix‐preventing configurations of the two central β2/β3‐amino acid residues) provides unusually tight hairpin structural clusters (cf. 3 and 4a ; Figs. 8 and 9). The skeleton of the β‐tetrapeptide H‐(R)β3hVal‐(R)β2hVal‐(R)β3hAla‐(S)β3hPhe‐OH ( 4a ) is proposed as a novel, very simple backbone structure for mimicking α‐peptidic hairpin turns.  相似文献   
7.
Post-irradiation studies have been carried out to elucidate the effects of electron beam irradiation on the structural, optical, dielectric, and thermal properties of high-density polyethylene (HDPE) films. The experimental results showed that both the optical band gap and activation energy of HDPE films decreases with an increase in the doses of electron radiation. The electrical measurements showed that dielectric constant and the ac conductivity of HDPE increases with an increase in the dose of electron radiation. The thermal analysis carried out using DSC and TGA revealed that the melting temperature, degree of crystallinity, and thermal stability of the HDPE films increased, obviously, due to the predominant cross-linking reaction following high doses of electron irradiation.  相似文献   
8.
A remote 4J(F,H) coupling (F? C(α)? C(O)? N? H) of up to 4.2 Hz in α‐fluoro amides with antiperiplanar arrangement of the C? F and the C?O bonds (dihedral angle F? C? C?O ca. 180°) confirms that previous NMR determinations, using the XPLOR‐NIH procedure, of the secondary structures of β‐peptides containing β3hAla(αF) and β3hAla(αF2) residues were correct. In contrast, molecular‐dynamics (MD) simulations, using the GROMOS program with the 45A3 force field, led to an incorrect conclusion about the relative stability of secondary structures of these β‐peptides. The problems encountered in NMR analyses and computations of the structures of backbone‐F‐substituted peptides are briefly discussed.  相似文献   
9.
A rapid and efficient method for the synthesis of novel dipyrazolo[3,4-b:3′,4′-d]pyridines (DPP) from pyrazolo[3,4-b]pyridine was successfully developed. The DPP derivative was further N-alkylated (6, 8) as well as N-linked with amino acids (13) and their photophysical properties were studied along with N-aryl DPP 4 and observed that the chromophores at C4 position in the aryl ring changed the absorption and emission λmax.  相似文献   
10.
Twelve peptides, 1 – 12 , have been synthesized, which consist of alternating sequences of α‐ and β‐amino acid residues carrying either proteinogenic side chains or geminal dimethyl groups (Aib). Two peptides, 13 and 14 , containing 2‐methyl‐3‐aminobutanoic acid residues or a ‘random mix’ of α‐, β2‐, and β3‐amino acid moieties were also prepared. The new compounds were fully characterized by CD (Figs. 1 and 2), and 1H‐ and 13C‐NMR spectroscopy, and high‐resolution mass spectrometry (HR‐MS). In two cases, 3 and 14 , we discovered novel types of turn structures with nine‐ and ten‐membered H‐bonded rings forming the actual turns. In two other cases, 8 and 11 , we found 14/15‐helices, which had been previously disclosed in mixed α/β‐peptides containing unusual β‐amino acids with non‐proteinogenic side chains. The helices are formed by peptides containing the amino acid moiety Aib in every other position, and their backbones are primarily not held together by H‐bonds, but by the intrinsic conformations of the containing amino acid building blocks. The structures offer new possibilities of mimicking peptide–protein and protein–protein interactions (PPI).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号