首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
物理学   2篇
  2021年   1篇
  2011年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In this study, we propose the fabrication of sol-gel composite-based flexible and transparent synaptic transistors on polyimide (PI) substrates. Because a low thermal budget process is essential for the implementation of high-performance synaptic transistors on flexible PI substrates, microwave annealing (MWA) as a heat treatment process suitable for thermally vulnerable substrates was employed and compared to conventional thermal annealing (CTA). In addition, a solution-processed wide-bandgap amorphous In-Ga-Zn (2:1:1) oxide (a-IGZO) channel, an organic polymer chitosan electrolyte-based electric double layer (EDL), and a high-k Ta2O5 thin-film dielectric layer were applied to achieve high flexibility and transparency. The essential synaptic plasticity of the flexible and transparent synaptic transistors fabricated with the MWA process was demonstrated by single spike, paired-pulse facilitation, multi-spike facilitation excitatory post-synaptic current (EPSC), and three-cycle evaluation of potentiation and depression behaviors. Furthermore, we verified the mechanical robustness of the fabricated device through repeated bending tests and demonstrated that the electrical properties were stably maintained. As a result, the proposed sol-gel composite-based synaptic transistors are expected to serve as transparent and flexible intelligent electronic devices capable of stable neural operation.  相似文献   
2.
In this paper, the engineered tunnel barrier technology is introduced by using the engineered tunnel barrier of VARIOT type (SiO2/Si3N4/SiO2) and CRESTED type (Si3N4/SiO2/Si3N4) with Si3N4 and high-k HfO2 layers as charge trapping layers, respectively. In addition, the high-k stacked VARIOT type of SiO2/HfO2/Al2O3 and Al2O3/HfO2/Al2O3 are compared with O/N/O tunnel barrier memory. As a result, the engineered tunnel barrier memory device showed excellent memory characteristics compared to the single SiO2 tunnel barrier memory device, such as very high P/E (program/erase) speed, good retention time and no degradation in endurance characteristics.  相似文献   
3.
A memory device with In2O3 nanocrystals embedded in a biphenyl-tertracarboxylic dianhydride-phenylen diamine (BPDA-PDA) polyimide layer on a ZnO layer was fabricated, and its electrical properties were evaluated. Then, the transmittance efficiency in the structure of the BPDA-PDA polyimide/In2O3 nanocrystals/ZnO/ITO/double polishing sapphire substrate was measured to be about 80% between 440 to 800 nm by ultraviolet-visible transmittance spectroscopy. A bipolar switching current bistability by difference resistance appeared in the sweep voltage rage from −7 to 7 V. It was considered that the bipolar behavior of current-voltage may originate from a resistance fluctuation because of the electron charging effect in In2O3 nanocrystals by voltage sweeping, Fowler–Nordheim tunneling, space-charge-limited current, and the migration of O2− ions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号