首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   21篇
  国内免费   1篇
化学   193篇
力学   6篇
数学   27篇
物理学   53篇
  2024年   2篇
  2023年   14篇
  2022年   15篇
  2021年   18篇
  2020年   15篇
  2019年   17篇
  2018年   11篇
  2017年   9篇
  2016年   14篇
  2015年   11篇
  2014年   12篇
  2013年   18篇
  2012年   22篇
  2011年   14篇
  2010年   16篇
  2009年   7篇
  2008年   10篇
  2007年   17篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
1.
A general partial summation method for including arbitrary classes of diagrams to all orders in the coupled cluster based size consistent energy functional for closed shell states is developed. Since the various reduced density matrices which appear in the energy functional are essentially the time-independent analogues of the corresponding many body Green functions, it is possible to derive Dyson-like equations for these quantities. By expanding the associated proper self energy parts in terms of the T-amplitudes, one can carry out partial summations in the reduced density matrices and thus in energy. At a higher level, higher order terms in a proper self energy can also be generated by renormalizing the internal propagators in it, and considering only the irreducible self-energy terms.  相似文献   
2.
3.
A new water-dispersible nanostructure based on magnetite (Fe3O4) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe3O4@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis) and Gram-negative Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) reference strains. Concerning the influence of Fe3O4@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E. faecalis and E. coli, as compared with the Fe3O4 control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S. aureus and E. faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E. coli biofilm development, only at high concentrations, while for P. aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe3O4@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains.  相似文献   
4.
Numerical modelling of the ultrasonic wave propagation is important for Structural Heath Monitoring and System Prognosis problems. In order to develop intelligent and adaptive structures with embedded damage detector and classifier mechanisms, detailed understanding of scattered wave fields due to anomaly in the structure is inevitably required. A detailed understanding of the problem demands a good modelling of the wave propagation in the problem geometry in virtual form. Therefore, efficient analytical, semi-analytical or numerical modelling techniques are required. In recent years a semi-analytical mesh-free technique called Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic wave field problems. In the conventional DPSM approach point sources are placed along the transducer faces, problem boundaries and interfaces to model incident and scattered fields. Every point source emits energy in all directions uniformly. Source strengths of these 360° radiation sources are obtained by satisfying interface and boundary conditions of the problem. In conventional DPSM modelling approach it is assumed that the shadow zone does not require any special consideration. 360° Radiation point sources should be capable of properly modelling shadow zones because all boundary and interface conditions are satisfied. In this paper it is investigated how good this assumption is by introducing the ‘shadow zone’ concept at the point source level and comparing the results generated by the conventional DPSM and by this modified approach where the conventional 360° radiation point sources are replaced by the Controlled Space Radiation (CSR) sources.  相似文献   
5.
Distributed point source method (DPSM) is gradually gaining popularity in the field of non-destructive evaluation (NDE). DPSM is a semi-analytical technique that can be used to calculate the ultrasonic fields produced by transducers of finite dimension placed in homogeneous or non-homogeneous media. This technique has been already used to model ultrasonic fields in homogeneous and multi-layered fluid structures. In this paper the method is extended to model the ultrasonic fields generated in both fluid and solid media near a fluid-solid interface when the transducer is placed in the fluid half-space near the interface. Most results in this paper are generated by the newly developed DPSM technique that requires matrix inversion. This technique is identified as the matrix inversion based DPSM technique. Some of these results are compared with the results produced by the Rayleigh-Sommerfield integral based DPSM technique. Theory behind both matrix inversion based and Rayleigh-Sommerfield integral based DPSM techniques is presented in this paper. The matrix inversion based DPSM technique is found to be very efficient for computing the ultrasonic field in non-homogeneous materials. One objective of this study is to model ultrasonic fields in both solids and fluids generated by the leaky Rayleigh wave when finite size transducers are inclined at Rayleigh critical angles. This phenomenon has been correctly modelled by the technique. It should be mentioned here that techniques based on paraxial assumptions fail to model the critical reflection phenomenon. Other advantages of the DPSM technique compared to the currently available techniques for transducer radiation modelling are discussed in the paper under Introduction.  相似文献   
6.
Due to the inherent difficulty in crystallizing membrane proteins, approaches based on fluorescence spectroscopy have proved useful in elucidating their conformational characteristics. The ion channel peptide gramicidin serves as an excellent prototype for monitoring membrane protein conformation and dynamics due to a number of reasons. We have analyzed conformational heterogeneity in membrane-bound gramicidin using fluorescence lifetime distribution analysis of tryptophan residues by the maximum entropy method (MEM). MEM represents a model-free and robust approach for analyzing fluorescence lifetime distribution. In this paper, we show for the first time, that fluorescence lifetime distribution analysis using MEM could be a convenient approach to monitor conformational heterogeneity in membrane-bound gramicidin in particular and membrane proteins in general. Lifetime distribution analysis by MEM therefore provides a novel window to monitor conformational transitions in membrane proteins.  相似文献   
7.
In this paper certain correspondences have been shown among various formulations of coupled-cluster theories for many electron closed-shell systems. Specifically it is shown that (i) the energy functional using unitary ansatz of the form exp (TT +) is exactly sameorder by order inT with the size-consistent energy functional 〈ψ|H|ψ〉/〈ψ|ψ〉 recently obtained by us in coupled-cluster framework; (ii) in the framework of unitary ansatz of the form exp (TT +), both non-variational and variational approaches lead to identical equations upto any given order inT andT + inTT 2 approximation; (iii) variational procedure using our size-consistent energy functional or using the functional obtained in the framework of unitary ansatz (as envisaged by Kutzelnigg) leads to energy in both cases, inTT 2 approximation, for a total of quadratic powers inT andT +, same as Cizek’s linearised coupled pair many electron theory energy; (iv) in case of practical calculation of the energy through the variational procedures using our size-consistent energy functional and the functional in unitary ansatz framework, there is a loss of upper bound.  相似文献   
8.
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.  相似文献   
9.
Abstract

Effective extraction of phyto-biomolecules insures retaining maximum functionality along with higher recovery. In this study, ultrasound-solvent assisted extraction (USAE) was employed for optimal extraction of phyto-biomolecules from Sesamum indicum (sesame) leaves using the approach of Response Surface Methodology (RSM). The optimized condition of 200?W power, 59% methanol concentration with 1:14?g/mL solid–liquid ratio and 15?min of extraction time yielded 367.39?±?1.85?mg GAE/100?g of total phenolic content, 96.72?±?3.27% of free radical scavenging activity and 81.20?±?2.87% of iron chelating activity respectively. The extract consist of essential phytocomponents like gallic acid, chlorogenic acid, and quercetin with lipid peroxidation activities of >50% over incubation time of 48?h. Also, showed antimicrobial activity against various Gram’s negative and positive food borne pathogens. The results of this study implied the importance of USAE for effective and optimum recovery of phyto-biomolecules from Sesame leaves with retained functional properties.  相似文献   
10.
The photovoltaic performance of quantum-dot solar cells strongly depends on the charge-carrier relaxation and recombination processes, which need to be modulated in a favorable way to obtain maximum efficiency. Recently, significant efforts have been devoted to investigate the carrier dynamics of nanocrystal sensitizers, both in solution and deposited on TiO2 photoanodes, with the aim to correlate the excitonics with solar-energy conversion efficiency. This Minireview summarizes some proof of the concepts that efficiency can be directly correlated to the exciton dynamics of quantum-dot solar cells. The presented findings are based on CdSeS alloy, CdSe/CdS core/shell, Au/CdSe nanohybrids, and Mn-doped CdZnSSe nanocrystals, where the favourable excitonic processes are optimized to enhance the efficiency. Future prospects and limitations are addressed as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号