The polymerization of methyl methacrylate was studied in carbon tetrachloride medium with ferric laurate, a metal soap, in combination with n-hexyl amine as the initiator system at 60°C. The rate of polymerization was found to be linear with the monomer concentration and proportional to the square root of both ferric ion and amine concentration. A reaction scheme involving initial complex formation between ferric ion and amine and subsequent reaction of the complex with the solvent molecule to produce free radicals responsible for initiation of polymerization has been postulated to account for the observed results. 相似文献
Monte Carlo simulations with the Keating model have been performed to predict the lattice constant and bond length variations with composition for pseudo-binary semiconducting alloys. In general, it is observed that the deviations of the lattice constants from Vegard's law predictions are larger as the lattice mismatch between the constituent binaries increases. Further, it is noted that these alloys have partial virtual crystal model characteristics and tend to be more towards the flexible (floppy) crystal limit as compared to the rigid crystal limit. The topological rigidity parameters are bond-type dependent. The angular deviations from perfect tetrahedral structure are also measured. 相似文献
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC–MS/LC–MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of???7.274 and???5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020–3 has demonstrated better stability in the ligand–receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.
Well-defined nanostructures were written with quantum dots and magnetic nanoparticles on gold and mica surfaces using dip-pen nanolithography at room temperature. The structures with both the nanoparticles were characterised by in situ topography measurements, and the quantum dot structures were mapped by fluorescence mapping. It is demonstrated that structures of various kinds such as dots and lines can be prepared using such nanoparticles on suitably prepared surfaces. 相似文献
The vortex motion of a dust cloud was experimentally observed in unmagnetized cogenerated dusty plasma in different experimental parameters. Particle image velocimetry analysis demonstrated that several vortex zones exist in the dust cloud at relatively low pressures (0.06 mbar (or 6 Pa)–0.08 mbar (or 8 Pa)) and low discharge voltages (peak‐to‐peak voltage 540–560 V), whereas in relatively high pressure (0.4 mbar (or 40 Pa)–0.7 mbar (or 70 Pa)) and high discharge voltage (peak‐to‐peak voltage 690–740 V), dust vortices formed in dense dust cloud with background plasma fluctuation. 相似文献
The condensation of 3-amino-1H-1,2,4-triazole with benzaldehyde and terephthalaldehyde provides the bidentate and tetradentate Schiff bases 1,2,4-triazolo-3-imino-benzene L1H and 1,4-bis(1,2,4-triazolo-3-imino)benzene L2H2, respectively. The well characterized Schiff bases were allowed to react with cis-Ru(bpy)2Cl2 · 2H2O. Isomers of the mononuclear complexes Ru(bpy)2L1]PF6 · NH4PF6 (1a, N4) and [Ru(bpy)2L1]PF6 · 0.5NH4PF6 (1b, N2), and the dinuclear Ru(II) complexes [Ru(bpy)2L2Ru(bpy)2](PF6)2 · NH4PF6 (2a, N4N4), [Ru(bpy)2L2Ru(bpy)2](PF6)2 · NH4PF6 · 2H2O (2b, N2N2) and [Ru(bpy)2L2Ru(bpy)2](PF6)3 · NH4PF6 (2c, Ru(II)-Ru(III)) were separated by column chromatography and characterized by their elemental analysis, FAB mass and spectral (IR, NMR, UV–Vis) data. The data obtained suggest that the ligands are bound to the metal centre via the N4 and N2 atoms of the triazole moiety along with the N (imine) atom. The complexes display metal-to-ligand charge-transfer (MLCT) transitions in the visible region from the dπ(RuII) → π∗L transition. Highly intense ligand-based π→π∗ transitions are observed in the UV region. A dual emission occurs from the N2 and N2N2 isomers. 相似文献
Spectral properties of a new fluorescent ketocyanine dye have been discussed. The energy of maximum absorption/fluorescence of the dye exhibits bathochromic shift with increasing polarity of the medium. Both dipolarity-polarisability and hydrogen bond donation interaction contribute to solvation of the dye. Study of fluorescence parameters points to existence of different emitting states of the dye for aprotic and protic solvents. While the emitting state is the (1)(π, π*) state for aprotic solvents, fluorescence supposedly take place from a different emitting state involving H-bond formation in the excited state in protic solvents. Fluorescence parameters of the dye have been compared with those for a structurally similar symmetric ketocyanine dye. The faster decay of the dye relative to its symmetric counterpart has been explained as due to an increase of nonradiative decay. 相似文献
Metal complexes of multi-porphyrins and multi-corroles are unique systems that display a host of extremely interesting properties. Availability of free meso and β positions allow formation of different types of directly linked bis-porphyrins giving rise to intriguing optical and electronic properties. While the fields of metalloporphyrin and corroles monomer have seen exponential growth in the last decades, the chemistry of metal complexes of bis-porphyrins and bis-corroles remain rather underexplored. Therefore, the impact of covalent linkages on the optical, electronic, (spectro)electrochemical, magnetic and electrocatalytic activities of metal complexes of bis-porphyrins and -corroles has been summarized in this review article. This article shows that despite the (still) somewhat difficult synthetic access to these molecules, their extremely exciting properties do make a strong case for pursuing research on these classes of compounds. 相似文献