首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1693篇
  免费   146篇
  国内免费   4篇
化学   1178篇
晶体学   2篇
力学   53篇
数学   327篇
物理学   283篇
  2023年   34篇
  2022年   24篇
  2021年   52篇
  2020年   110篇
  2019年   78篇
  2018年   47篇
  2017年   42篇
  2016年   121篇
  2015年   94篇
  2014年   92篇
  2013年   92篇
  2012年   127篇
  2011年   132篇
  2010年   78篇
  2009年   60篇
  2008年   81篇
  2007年   71篇
  2006年   53篇
  2005年   51篇
  2004年   26篇
  2003年   33篇
  2002年   36篇
  2001年   11篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   8篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1986年   8篇
  1978年   5篇
  1977年   10篇
  1976年   6篇
  1974年   5篇
  1972年   5篇
  1971年   5篇
  1970年   6篇
  1968年   7篇
  1967年   7篇
  1966年   5篇
  1964年   5篇
  1963年   6篇
  1930年   5篇
  1912年   5篇
  1911年   5篇
  1909年   5篇
排序方式: 共有1843条查询结果,搜索用时 31 毫秒
1.
2.
The ideal scalar Aharonov–Bohm (SAB) and Aharonov–Casher (AC) effect involve a magnetic dipole pointing in a certain fixed direction: along a purely time dependent magnetic field in the SAB case and perpendicular to a planar static electric field in the AC case. We extend these effects to arbitrary direction of the magnetic dipole. The precise conditions for having nondispersive precession and interference effects in these generalized set ups are delineated both classically and quantally. Under these conditions the dipole is affected by a nonvanishing torque that causes pure precession around the directions defined by the ideal set ups. It is shown that the precession angles are in the quantal case linearly related to the ideal phase differences, and that the nonideal phase differences are nonlinearly related to the ideal phase differences. It is argued that the latter nonlinearity is due to the appearance of a geometric phase associated with the nontrivial spin path. It is further demonstrated that the spatial force vanishes in all cases except in the classical treatment of the nonideal AC set up, where the occurring force has to be compensated by the experimental arrangement. Finally, for a closed space-time loop the local precession effects can be inferred from the interference pattern characterized by the nonideal phase differences and the visibilities. It is argued that this makes it natural to regard SAB and AC as essentially local and nontopological effects.  相似文献   
3.
Efficiently accessing the information contained in non-linear and high dimensional probability distributions remains a core challenge in modern statistics. Traditionally, estimators that go beyond point estimates are either categorized as Variational Inference (VI) or Markov-Chain Monte-Carlo (MCMC) techniques. While MCMC methods that utilize the geometric properties of continuous probability distributions to increase their efficiency have been proposed, VI methods rarely use the geometry. This work aims to fill this gap and proposes geometric Variational Inference (geoVI), a method based on Riemannian geometry and the Fisher information metric. It is used to construct a coordinate transformation that relates the Riemannian manifold associated with the metric to Euclidean space. The distribution, expressed in the coordinate system induced by the transformation, takes a particularly simple form that allows for an accurate variational approximation by a normal distribution. Furthermore, the algorithmic structure allows for an efficient implementation of geoVI which is demonstrated on multiple examples, ranging from low-dimensional illustrative ones to non-linear, hierarchical Bayesian inverse problems in thousands of dimensions.  相似文献   
4.
本文使用傅里叶变换微波谱仪研究了乙基苯胺类物质(邻乙基苯胺,间乙基苯胺,对乙基苯胺)的分子结构. 由于此类分子含氮原子(I14N=1),因此跃迁谱线中都呈现出核四级裂分. 通过比较实验测定得到的分子结构,可总结苯胺环上不同位置乙基的取代对氨基及分子整体结构的影响.  相似文献   
5.
We derive and extend the time-dependent surface-flux method introduced in [L. Tao, A. Scrinzi, New J. Phys. 14, 013021 (2012)] within a time-dependent density-functional theory (TDDFT) formalism and use it to calculate photoelectron spectra and angular distributions of atoms and molecules when excited by laser pulses. We present other, existing computational TDDFT methods that are suitable for the calculation of electron emission in compact spatial regions, and compare their results. We illustrate the performance of the new method by simulating strong-field ionization of C60 fullerene and discuss final state effects in the orbital reconstruction of planar organic molecules.  相似文献   
6.
Quarkonium spectral functions at finite temperature are studied, making use of a recently developed method of analyzing QCD sum rules by the maximum entropy method. This approach enables us to directly obtain the spectral function from the sum rules, without having to introduce any specific assumption about its functional form. QCD sum rules for heavy quarkonia incorporate finite temperature effects in form of changing values of the various gluonic condensates that appear in the operator product expansion. These changes depend on the energy density and pressure at finite temperature, which we extract from quenched lattice QCD calculations. As a result, it is found that the charmonium ground states of both S-wave and P-wave channels dissolve into the continuum already at temperatures around or slightly above the critical temperature T c , while the bottomonium states are less influenced by temperature effects, surviving up to about 2.5 T c or higher for S-wave and about 2.0 T c for P-wave states.  相似文献   
7.
8.
9.
10.
Charmonia spectral functions at finite temperature are studied using QCD sum rules in combination with the maximum entropy method. This approach enables us to directly obtain the spectral function from the sum rules, without having to introduce any specific assumption about its functional form. As a result, it is found that while J/ψ and η(c) manifest themselves as significant peaks in the spectral function below the deconfinement temperature T(c), they quickly dissolve into the continuum and almost completely disappear at temperatures between 1.0T(c) and 1.1T(c).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号