首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   4篇
化学   71篇
晶体学   1篇
数学   23篇
物理学   23篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   14篇
  2010年   5篇
  2009年   7篇
  2008年   2篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
1.
2.
Equilibrium molecular dynamics (MD) simulations have been performed in both the NVT and NPT ensembles to study the structural and dynamical properties of fully occupied methane clathrate hydrates at 50, 125, and 200 K. Five atomistic potential models were used for water, ranging from fully flexible to rigid polarizable and nonpolarizable. A flexible and a rigid model were utilized for methane. The phonon densities of states were evaluated and the localized rattling modes for the methane molecules were found to couple to the acoustic phonons of the host lattice. The calculated methane density of states was found to be in reasonable agreement with available experimental data.  相似文献   
3.
Non-equilibrium molecular dynamics (NEMD) simulations have been performed for static electric fields for a range of positively charged spherical rutile-titania nanoparticles with radii of 1.5 to 2.9 nm for two different salt concentrations in water, in order to simulate electrophoresis directly. Using the observed limiting drag velocities, Helmholtz-Smoluchowski (HS) theory was used to estimate their ζ potentials. These estimates were compared to values from numerical solution of the non-linear Poisson-Boltzmann (PB) equation for representative configurations of the nanoparticles, in addition to idealised analytic and Debye-Hückel (DH) solutions about spherical particles of the same geometry and charge state, for the given salt concentrations. It was found that reasonable agreement was obtained between the various approaches, with the NEMD-HS results some 15%-15% smaller than the numerical PB results for more highly charged nanoparticles.  相似文献   
4.
We describe the development of a novel mobile field laboratory, purposely designed for the automated capture and subsequent stable isotopic analyses of multiple gas samples. The multiple capture system is integrated into a mobile laboratory that is fully capable of measuring the concentration of carbon dioxide, methane and nitrous oxide trace gases in a flow-through system connected to a gas chromatograph fitted with both electron capture and flame ionisation detectors. The capture of gases is achieved by routing samples through a series of 135 mL gas flasks that are sealed by micro-solenoid valves triggered by a timing system. Trace gas light stable isotope ratio mass spectrometry can then be carried out on gas samples collected by the system (NERC (15)N Stable Isotope Facility). The excitingly unique potential of the system to the ecological research field is that it will allow the collection of cyclical data for three different trace gases both in real-time and in situ. We present data arising from the validation of this mobile system as well as a preliminary experimental assessment of this technique. This technique was used to measure delta(13)C in CO(2) and CH(4) in soil gases released from waterlogged cores and delta(13)C-CH(4) values were significantly depleted in wet cores compared with dry ones (p < 0.001).  相似文献   
5.
We study the Cauchy problem for non-abelian Yang-Mills-Higgs theory in (3+1)-dimensional Minkowski spacetime. With suitable conditions on the background fields and a suitable choice of a Sobolev space for the subtracted gauge potentials and the Higgs field, we establish local existence. We then prove global existence by showing that an appropriate norm of the solutions cannot blow up in a finite time.  相似文献   
6.
This communication describes the electrochemical properties of thin pyrolytic carbon (PyC) films created using a reliable, non-catalytic chemical vapour deposition (CVD) process. After deposition, the electron transfer characteristics of the films are optimised using a simple oxygen plasma treatment. The redox probes Ru(NH3)63+/2+, Fe(CN)63?/4? and Fe3+/2+ are employed to demonstrate that the resulting material is endowed with a large electrochemical surface area and outstanding electron transfer properties. Atomic force microscopy (AFM), Raman and X-ray photoelectron spectroscopy (XPS) are used to elucidate the morphology and chemical composition of the electrode surfaces. This material represents a new class of carbon electrode, and its large densities of edge-plane sites and oxygenated functionalities make it an ideal candidate for electrochemical sensor applications.  相似文献   
7.
Electronic‐structure density functional theory calculations have been performed to construct the potential energy surface for H2 release from ammonia‐borane, with a novel bifunctional cationic ruthenium catalyst based on the sterically bulky β‐diketiminato ligand (Schreiber et al., ACS Catal. 2012, 2, 2505). The focus is on identifying both a suitable substitution pattern for ammonia‐borane optimized for chemical hydrogen storage and allowing for low‐energy dehydrogenation. The interaction of ammonia‐borane, and related substituted ammonia‐boranes, with a bifunctional η6‐arene ruthenium catalyst and associated variants is investigated for dehydrogenation. Interestingly, in a number of cases, hydride‐proton transfer from the substituted ammonia‐borane to the catalyst undergoes a barrier‐less process in the gas phase, with rapid formation of hydrogenated catalyst in the gas phase. Amongst the catalysts considered, N,N‐difluoro ammonia‐borane and N‐phenyl ammonia‐borane systems resulted in negative activation energy barriers. However, these types of ammonia‐boranes are inherently thermodynamically unstable and undergo barrierless decay in the gas phase. Apart from N,N‐difluoro ammonia‐borane, the interaction between different types of catalyst and ammonia borane was modeled in the solvent phase, revealing free‐energy barriers slightly higher than those in the gas phase. Amongst the various potential candidate Ru‐complexes screened, few are found to differ in terms of efficiency for the dehydrogenation (rate‐limiting) step. To model dehydrogenation more accurately, a selection of explicit protic solvent molecules was considered, with the goal of lowering energy barriers for H‐H recombination. It was found that primary (1°), 2°, and 3° alcohols are the most suitable to enhance reaction rate. © 2014 Wiley Periodicals, Inc.  相似文献   
8.
A study of the nucleation kinetics for a cooling crystallisation of paracetamol–ethanol solutions in a batch reactor is described in this paper. Metastable zone width (MSZW) experiments were conducted in order to estimate the nucleation kinetics of the system. Measured MSZWs can be affected by numerous process parameters, such as cooling rate, concentration, agitation rate, and working volume. Two theoretical approaches were employed to estimate the nucleation kinetics, the classical mass based approach of Nývlt, and a more recent approach by Kubota, which also considers number density. Both approaches were found to produce similar estimates for the nucleation rates of the paracetamol–ethanol solutions as a function of supersaturation for an assumed nucleus size of 10 μm. The theory of Kubota was found to predict satisfactory estimates for the induction time of the nucleation process from MSZW data. The induction time was observed to be independent of the solution temperature as suggested by Kubota’s theory. This is a novel finding and serves to validate the induction time theory of Kubota. In this investigation, MSZWs were observed to decrease with increased levels of agitation and found to be independent of working volume.  相似文献   
9.
Water self-diffusion within human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of external ac and dc electric fields. The computed diffusive (p(d)) and osmotic (p(f)) permeabilities under zero-field conditions are (0.718 ± 0.24) × 10(-14) cm(3) s(-1) and (2.94 ± 0.47) × 10(-14) cm(3) s(-1), respectively; our p(f) agrees with the experimental value of (1.50 ± 0.6) × 10(-14) cm(3) s(-1). A gating mechanism has been proposed in which side-chain dynamics of residue H201, located in the selectivity filter, play an essential role. In addition, for nonequilibrium MD in external fields, it was found that water dipole orientation within the constriction region of the channel is affected by electric fields (e-fields) and that this governs the permeability. It was also found that the rate of side-chain flipping motion of residue H201 is increased in the presence of e-fields, which influences water conductivity further.  相似文献   
10.
Classical equilibrium molecular dynamics (MD) simulations have been performed to investigate the dynamical and energetic properties in hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 30 and 200 K and 0.05 kbar, and also at intermediate temperatures, using SPC/E and TIP4P-2005 water models. The potential model is found to have a large impact on overall density, with the TIP4P-2005 systems being on average 1% more dense than their SPC/E counterparts, due to the greater guest-host interaction energy. For the lightly-filled mixed H(2)-THF system, in which there is single H(2) occupation of the small cage (1s1l), we find that the largest contribution to the interaction energy of both types of guest is the van der Waals component with the surrounding water molecules in the constituent cavities. For the more densely-filled mixed H(2)-THF system, in which there is double H(2) occupation in the small cage (2s1l), we find that there is no dominant component (i.e., van der Waals or Coulombic) in the H(2) interaction energy with the rest of the system, but for the THF molecules, the dominant contribution is again the van der Waals interaction with the surrounding cage-water molecules; again, the Coulombic component increases in importance with increasing temperature. The lightly-filled pure H(2) hydrate (1s4l) system exhibits a similar pattern vis-à-vis the H(2) interaction energy as for the lightly-filled mixed H(2)-THF system, and for the more densely-filled pure H(2) system (2s4l), there is no dominant component of interaction energy, due to the multiple occupancy of the cavities. By consideration of Kubic harmonics, there is some evidence of preferential alignment of the THF molecules, particularly at 200 K; this was found to arise at higher temperatures due to transient hydrogen bonding of the oxygen atom in THF molecules with the surrounding cage-water molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号