首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  国内免费   1篇
化学   49篇
力学   1篇
数学   2篇
物理学   11篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   12篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
2.
Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2O3) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm−2, being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2O3. Additionally, we demonstrate the photocurrent of α-Fe2O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2O3 photoanodes.  相似文献   
3.
Research on Chemical Intermediates - A convenient, one-pot, multicomponent synthesis of new (4-oxothiazolidine-2-ylidene)benzamide derivatives by unsymmetrical thioureas, various amines and methyl...  相似文献   
4.
5.
A facile synthesis of novel spiroindane-1,3-diones has been achieved via 1,3-dipolar cycloaddition of an azomethine ylide, generated in situ from ninhydrin and 1,2,3,4-tetrahydroisoquinoline, with the conjugated double bond of chalcone derivatives. The regiochemistry and structures of the cycloadducts were determined with spectroscopic data and by X-ray crystal structure analysis.  相似文献   
6.
Structural Chemistry - The molecular mechanism of the cycloaddition reactions of 2H-azirine with 1-methoxybutadiene and cyclohexadiene has been studied at the M06-2X/cc-pVDZ level of theory....  相似文献   
7.
    
In the present work, novel 5-((1-benzyl-1,2,3-triazol-4-yl)methoxybenzylidene)-2-(arylamino)thiazol-4-one thiazolone incorporated triazole derivatives have been designed as tyrosinase inhibitors. The compounds were synthesized through click reaction in good yield. Moreover, the antityrosinas activity of the synthesized derivatives was evaluated. In the search for establishing a click copper-catalyzed azide/alkyne cycloaddition (CuAAC) reaction under strict conditions, in terms of a novel air-stable, a recyclable and efficient magnetic catalyst was planned for new triazole derivatives as a well-organized copper iodide supported on the functionalized Fe3O4@SiO2 core-shell (CuI/Fe3O4@SiO2(TMS-EDTA) nanoparticles). The engineered nanocatalyst synthesized for the first time and characterized by different methods, including FT-IR spectroscopy, XRD, FESEM, EDX, TEM, TGA, and BET analysis. The excellent catalytic performance in ethanol with high surface area (351.7 m2g−1) and short reaction time for diverse functional groups (120–200 min), no use of toxic solvents, reusability of the catalyst, and using eco-friendly conditions are the advantageous of this work. Moreover,the nanocatalyst can be used at least five times without any significant decrease in the yield of the reaction. The thiazolidine-triazole derivatives 9a , 9c , 9e , and 9 g showed promising tyrosinase inhibitory activity with IC50 values in the range of 5.90–9.81 μM. The compounds were found to be considerably more potent tyrosinase inhibitors than the reference inhibitor kojic acid (IC50 = 18.36 μM).  相似文献   
8.
The palladium(II) chloride/triethylsilane system has been successfully applied for the selective hydrogenation of the carbon-carbon double bond of α,β-unsaturated ketones to yield the corresponding saturated carbonyl compounds. The reaction takes place under mild conditions and affords high yields.  相似文献   
9.
In this research, diamond-like carbon (DLC) thin films were deposited on silicon substrates by radio-frequency plasma enhanced chemical vapor deposition method using gas mixture of CH4 and Ar. The effect of different CH4/Ar gas ratio on the structure, refractive index, transmission and hardness of the DLC thin films were investigated by means of Raman spectroscopy, ellipsometry, Fourier transform Infrared Spectroscopy and nano-indentation methods, respectively. Nuclear resonant reaction analysis was used to measure the amount of hydrogen and carbon in the thin films. Furthermore, wettability of the thin films was achieved by measuring of water contact angle (WCA). The results indicated that the structural properties of the diamond-like carbon thin films are strongly dependent on the composition of gas mixture. Based on ellipsometry results, refractive index of the thin films varied in the range of 1.89–2.06 at 550 nm. FTIR results determined that deposition of DLC thin films on silicon substrate led to an increase of the light transmission in IR region and these films have the potential to be used in silicon optics as the antireflective coatings in this region. Nano-indentation analysis showed that the thin films hardness changed in the range of 7.5–11 GPa. On the other hand hydrogen content and fraction of C?H bonds in the samples increased by an increase in the gas ratio of CH4/Ar. Also, WCA measurements indicated that WCA for thin films with gas ratio of 3/7 is the most and equal to 79°.  相似文献   
10.
    
Herein, a new Cu(II) Schiff base complex was immobilized onto the magnetic graphene oxide surface through a stepwise procedure. The as-synthesized nanostructure (GO/Fe3O4/CuL) was characterized by various techniques including Fourier transform infrared (FT-IR), Raman spectroscopies, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), energy-dispersive X-ray (EDX) and inductively coupled plasma (ICP) spectroscopies, N2 adsorption–desorption analysis, vibrating sample magnetometry (VSM), and X-ray diffraction (XRD). The catalytic activity of the synthesized nanocatalyst was examined in 4-nitrophenol (4-NP), Congo red (CR), and methylene blue (MB) reduction using NaBH4 in an aqueous solution at room temperature. The reaction progress was monitored by UV–Vis spectroscopy. Also, the synthesized nanostructure was evaluated as an efficient catalyst for the synthesis of 2-amino-4H-benzopyrans via three-component reactions of 1-naphthol, malononitrile, and various aldehydes in ethanol/water at 50°C. The use of green solvents, the short reaction time, the high product yield, and easy separation from the reaction environment are the main benefits of this catalytic system. By covalent grafting of the complex on the graphene oxide surface, its catalytic performance significantly increased compared with graphene oxide; this is probably related to the chemical change of the graphene oxide surface. The results show the high chemical stability and the improved reusability of the synthesized nanocatalyst (six times) without significant loss in the catalytic activity of GO/Fe3O4/CuL nanocomposite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号