首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   7篇
  国内免费   3篇
化学   127篇
力学   1篇
数学   20篇
物理学   18篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   9篇
  2014年   1篇
  2013年   8篇
  2012年   7篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   15篇
  2007年   4篇
  2006年   12篇
  2005年   10篇
  2004年   10篇
  2003年   16篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1989年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
1.
The direct transfer of single‐crystalline Au nanowires (NWs) onto Au substrates was achieved by a simple attachment and detachment process. In the presence of a lubricant, Au NWs grown vertically on a sapphire substrate were efficiently moved to an Au substrate through van der Waals interactions. We demonstrate that the transferred Au NWs on the Au substrate can act as sensitive, reproducible, and long‐term‐stable surface‐enhanced Raman scattering (SERS) sensors by detecting human α‐thrombin as well as Pb2+ and Hg2+ ions. These three biochemically and/or environmentally important analytes were successfully detected with high sensitivity and selectivity by Au NW‐SERS sensors bound by a thrombin‐binding aptamer. Furthermore, the as‐prepared sensors remained in working order after being stored under ambient conditions at room temperature for 80 days. Because Au NWs can be routinely transferred onto Au substrates and because the resultant Au NW‐SERS sensors are highly stable and provide with high sensitivity and reproducibility of detection, these sensors hold potential for practical use in biochemical sensing.  相似文献   
2.
Steric effect is used to obtain a highly diastereoselective rearrangement reaction.  相似文献   
3.
Exceptional control of the phase behavior of highly ordered large pore mesostructured silica (with the choice of Fm3m, Im3m or p6mm symmetry) is achieved using a triblock copolymer (EO(106)PO(70)EO(106)) and butanol at low acid concentrations.  相似文献   
4.
Lee J  Ryoo SR  Kim SK  Ahn JH  Min DH  Yeo WS 《Analytical sciences》2011,27(11):1127-1131
We report on a novel method for the quantitation of proteins specifically bound on a ligand-presenting biochip by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The bound protein was digested by trypsin, and the resulting peptide fragments were analyzed by MALDI-TOF MS in the presence of an isotope-labeled internal standard (IS). The IS has the same sequence as a reference peptide (RP) of the target protein digest, but a different molecular weight. The absolute amount of the specifically bound protein on a biochip is then quantitated by comparison of mass intensities between the RP and the IS. Because they have the same molecular milieu, the mass intensities of these two analytes represent the real amounts of analytes on the chip. As a model system, we tested glutathione s-transferase (GST) and a GST-fusion protein, which were captured on glutathione-presenting biochips. We observed that the glutathione densities on biochips showed a good correlation with the absolute quantity of the proteins. We believe that our method will provide an alternative to currently existing tools for the absolute quantitation of surface-bound proteins.  相似文献   
5.
Designing plasmonic hollow colloids with small interior nanogaps would allow structural properties to be exploited that are normally linked to an ensemble of particles but within a single nanoparticle. Now, a synthetic approach for constructing a new class of frame nanostructures is presented. Fine control over the galvanic replacement reaction of Ag nanoprisms with Au precursors gave unprecedented Au particle‐in‐a‐frame nanostructures with well‐defined sub‐2 nm interior nanogaps. The prepared nanostructures exhibited superior performance in applications, such as plasmonic sensing and surface‐enhanced Raman scattering, over their solid nanostructure and nanoframe counterparts. This highlights the benefit of their interior hot spots, which can highly promote and maximize the electric field confinement within a single nanostructure.  相似文献   
6.
Specially synthesized extra‐large crystallites of zeolite LTA with intentionally added mesoporosity are used for an in‐depth study of guest diffusion in hierarchical nanoporous materials by the pulsed field gradient NMR technique. Using propane as a guest molecule, intracrystalline mass transfer is demonstrated to be adequately described by a single effective diffusivity resulting from the weighted average of the diffusivities in the two (micro‐ and meso‐) pore spaces. Gas‐kinetic order‐of‐magnitude estimates of the diffusivities are in satisfactory agreement with the experimental data and are thus shown to provide a straightforward means for predicting and quantifying the benefit of hierarchically structured nanoporous materials in comparison with their purely microporous equivalent.  相似文献   
7.
8.
The radiative decay B-->phi K gamma is observed for the first time. The branching fraction for the charged B--->phi K- gamma decay mode is measured to be B(B--->phi K- gamma)=(3.4+/-0.9+/-0.4)x10(-6). The photon energy distribution for the B--->phi K- gamma decay is presented. The signal for the neutral B(0)-->phi K(0)gamma decay mode is not statistically significant and an upper limit, B(B(0)-->phi K(0)gamma)<8.3x10(-6) at 90% C.L., is set. The analysis is based on a data set of 90 fb(-1) collected by the Belle experiment at the e(+)e(-) asymmetric collider KEKB.  相似文献   
9.
We report electrostatic stabilization of micrometer-sized TiO(2) particles at long range (several micrometers) in liquid and supercritical CO(2) despite the ultralow dielectric constant, as low as 1.5. The counterions were solubilized in dry reverse micelles, formed with a low-molecular weight cationic perfluoropolyether trimethylammonium acetate surfactant, to prevent ion pairing with the particle surface. Dynamic light scattering and settling velocities indicate a particle diameter of 620-740 nm. The electrophoretic mobility of -2.3 x 10(-8) m(2)/V s indicated a particle charge on the order of -1.7 x 10(-17) C, or 105 elementary negative charges per particle. The balance of particle compression by an electric field versus electrostatic repulsion generated an amorphous arrangement of particles with 5-9 mum spacing, indicating Debye lengths greater than 1 mum. Scattering patterns also indicate that chains of particles may be achieved in CO(2) by dielectrophoresis with alternating fields. The electrostatic stabilization has been achieved by solubilizing a small concentration of counterions in only a small fraction of the reverse micelles in the double layer. Whereas many low-molecular weight surfactants have been shown to form reverse micelles in CO(2), very few polymers are able to stabilize micrometer-sized colloids sterically. Thus, electrostatic stabilization has the potential to expand markedly the domain of colloid science in apolar supercritical fluids.  相似文献   
10.
Mesoporous zeolites are a new and technologically important class of materials that exhibit improved diffusion and catalytic reaction properties compared to conventional zeolites with sub‐nanometer pore dimensions. During their syntheses, the transient developments of crystalline and mesoscopic order are closely coupled and challenging to control. Correlated solid‐state NMR, X‐ray, and electron microscopy analyses yield new molecular‐level insights on the interactions and distributions of complicated organic structure‐directing agents with respect to crystallizing zeolite frameworks. The analyses reveal the formation of an intermediate layered silicate phase, which subsequently transforms into zeolite nanosheets with uniform nano‐ and mesoscale porosities. Such materials result from coupled surfactant self‐assembly and inorganic crystallization processes, the interplay between which governs the onset and development of framework structural order on different length and time scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号