全文获取类型
收费全文 | 199篇 |
免费 | 21篇 |
专业分类
化学 | 150篇 |
力学 | 2篇 |
数学 | 27篇 |
物理学 | 41篇 |
出版年
2022年 | 6篇 |
2021年 | 3篇 |
2020年 | 3篇 |
2019年 | 3篇 |
2018年 | 6篇 |
2017年 | 6篇 |
2016年 | 8篇 |
2015年 | 5篇 |
2014年 | 10篇 |
2013年 | 14篇 |
2012年 | 33篇 |
2011年 | 24篇 |
2010年 | 11篇 |
2009年 | 12篇 |
2008年 | 15篇 |
2007年 | 6篇 |
2006年 | 16篇 |
2005年 | 11篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2002年 | 6篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1987年 | 1篇 |
1979年 | 2篇 |
排序方式: 共有220条查询结果,搜索用时 15 毫秒
1.
Pourbaix diagrams in weakly coupled systems: a case study involving acridinol and phenanthridinol pseudobases 下载免费PDF全文
Renat Khatmullin Hoi Ling Luk Christopher M. Hadad Ksenija D. Glusac 《Journal of Physical Organic Chemistry》2016,29(4):204-208
The thermodynamics of proton‐coupled electron transfer (PCET) in weakly coupled organic pseudobases was investigated using 2,7‐dimethyl‐9‐hydroxy‐9‐phenyl‐10‐tolyl‐9,10‐dihydroacridine (AcrOH) and 6‐phenylphenanthridinol (PheOH) as model compounds. Pourbaix diagrams for two model compounds were constructed using the oxidation potentials and the pKa values obtained, respectively, from cyclic voltammetry and photometric titrations. Our comparative study reveals the importance of having the redox active –N center closer to –OH functionality on the thermodynamics of PCET process: PheOH exhibits a wider range of pH values (pH = 2.8 to 13.3) in which both the alcohol and the corresponding alkoxy radical are expected to coexist in solution. This result indicates that a concerted mechanism is more likely to be discovered in pseudobases analogous to PheOH. The thermochemical data also indicate that the concerted PCET mechanism cannot be achieved if water is used as the proton acceptor: assuming the pKa of hydronium ions as ?1.7, the PCET involving PheOH or AcrOH as proton/electron donors and water as the proton acceptor is expected to follow the stepwise ET/PT mechanism. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
We address the electronic phase engineering in the impurity-infected functionalized bilayer graphene with hydrogen atoms (H-BLG) subjected to a uniform Zeeman magnetic field, employing the tight-binding model, the Green's function technique, and the Born approximation. In particular, the key point of the present work is focused on the electronic density of states (DOS) in the vicinity of the Fermi energy. By exploiting the perturbative picture, we figure out that how the interaction and/or competition between host electrons, guest electrons, and the magnetic field potential can lead to the phase transition in H-BLG. Furthermore, different configurations of hydrogenation, namely reduced table-like and reduced chair-like, are also considered when impurities are the same and/or different. A comprehensive information on the various configurations provides the semimetallic and gapless semiconducting behaviors for unfunctionalized bilayer graphene and H-BLGs, respectively. Further numerical calculations propose a semimetal-to-metal and gapless semiconductor-to-semimetal phase transition, respectively, when only turning on the magnetic field. Interestingly, the results indicate that the impurity doping alone affects the systems as well, leading to semimetal-to-metal and no phase transition in the pristine system and hydrogenated ones, respectively. However, the combined effect of charged impurity and magnetic field shows that the pristine bilayer graphene is not influenced much as the functionalized ones and phase back transitions appear. Tuning of the electronic phase of H-BLG by using both types of electronic and magnetic perturbations play a decisive role in optical responses. 相似文献
3.
4.
采用磁控溅射法,以镍硅合金为靶,制备了一种适用于金属诱导横向晶化的氧化物镍源——自缓释镍源.该镍源在内部构成和晶化现象上都不同于纯金属镍源.采用该镍源制备低温多晶硅材料,晶化速率不明显依赖于镍源薄膜的厚度,且晶化多晶硅膜内的残余镍量亦可有效降低,可为薄膜晶体管提供宽的工艺窗口.本文对用纯金属镍源所得多晶硅薄膜的晶化率、表面粗糙度、电学特性等与溅射条件的关系进行了研究,并对相应结果进行了讨论.
关键词:
自缓释
金属诱导横向晶化
多晶硅薄膜
低温制备与退火 相似文献
5.
6.
Effects of Y incorporation in TaON gate dielectric on electrical performance of GaAs metal–oxide–semiconductor capacitor 下载免费PDF全文
In this study, GaAs metal–oxide–semiconductor (MOS) capacitors using Y‐incorporated TaON as gate dielectric have been investigated. Experimental results show that the sample with a Y/(Y + Ta) atomic ratio of 27.6% exhibits the best device characteristics: high k value (22.9), low interfacestate density (9.0 × 1011 cm–2 eV–1), small flatband voltage (1.05 V), small frequency dispersion and low gate leakage current (1.3 × 10–5A/cm2 at Vfb + 1 V). These merits should be attributed to the complementary properties of Y2O3 and Ta2O5:Y can effectively passivate the large amount of oxygen vacancies in Ta2O5, while the positively‐charged oxygen vacancies in Ta2O5 are capable of neutralizing the effects of the negative oxide charges in Y2O3. This work demonstrates that an appropriate doping of Y content in TaON gate dielectric can effectively improve the electrical performance for GaAs MOS devices.
7.
8.
9.
Marija R. Zoric Usha Pandey Kadel Kirill A. Korvinson Hoi Ling Luk Arunpatcha Nimthong‐Roldan Matthias Zeller Ksenija D. Glusac 《Journal of Physical Organic Chemistry》2016,29(10):505-513
The conformational flexibility of three covalently linked dimers consisting of two xanthene‐based moieties connected by a diphenyl ether linker was studied using NMR spectroscopy, X‐ray crystallography, and density functional theory (DFT) calculations. The three dimers interconvert as a function of pH: the doubly cationic dimer (Xan+)2 exists in acidic solutions (pH < 0.5), the mono‐alcohol monocation Xan+–Xan‐OH at intermediate pH values (pH = 1–3), and the neutral diol at the highest pH‐values (pH > 3). Each dimer exhibits conformational degrees of freedom associated with rotations of either the xanthene moiety or of the diphenyl ether (DPE) linker. The barriers for rotation of the xanthylium moiety were evaluated using DFT calculations, yielding values of 23 kcal/mol for (Xan+)2 and 11 kcal/mol for (Xan‐OH)2, respectively. The rotational barrier for the diphenyl ether linker in Xan+–Xan‐OH (15 kcal/mol) was experimentally determined using variable temperature NMR measurements. The relative orientation of the two –OH groups in (Xan‐OH)2 diol was investigated in solution and the solid state using NMR spectroscopy and X‐ray crystallography. The conformer observed in the solid state was found to be the In–Out conformer, while free rotation of the xanthenol units is thought to occur on the NMR timescale at room temperature. These studies are relevant for the design of linkers for efficient water oxidation catalysts. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
Dysfunction of the blood–brain barrier (BBB) is involved in the pathogenesis of many cerebral diseases. Oxidative stress and inflammation are contributing factors for BBB injury. Piceatannol, a natural ingredient found in various plants, such as grapes, white tea, and passion fruit, plays an important role in antioxidant and anti-inflammatory responses. In this study, we examined the protective effects of piceatannol on lipopolysaccharide (LPS) insult in mouse brain endothelial cell line (bEnd.3) cells and the underlying mechanisms. The results showed that piceatannol mitigated the upregulated expression of adhesion molecules (ICAM-1 and VCAM-1) and iNOS in LPS-treated bEnd.3 cells. Moreover, piceatannol prevented the generation of reactive oxygen species in bEnd.3 cells stimulated with LPS. Mechanism investigations suggested that piceatannol inhibited NF-κB and MAPK activation. Taken together, these observations suggest that piceatannol reduces inflammation and oxidative stress through inactivating the NF-κB and MAPK signaling pathways on cerebral endothelial cells in vitro. 相似文献