首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   11篇
  国内免费   1篇
化学   192篇
晶体学   2篇
力学   1篇
数学   11篇
物理学   19篇
  2023年   2篇
  2022年   10篇
  2021年   9篇
  2020年   9篇
  2019年   11篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   10篇
  2013年   16篇
  2012年   13篇
  2011年   26篇
  2010年   11篇
  2009年   10篇
  2008年   20篇
  2007年   14篇
  2006年   11篇
  2005年   16篇
  2004年   6篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
1.
In this paper, we study the role of capacity on the efficiency of a two-tier supply chain with two suppliers (leaders, first tier) and one retailer (follower, second tier). The suppliers compete via pricing (Bertrand competition) and, as one would expect in practice, are faced with production capacity. We consider a model with differentiated substitutable products where the suppliers are symmetric differing only by their production capacity. We characterize the prices, production amounts and profits in three cases: (1) the suppliers compete in a decentralized Nash equilibrium game, (2) the suppliers “cooperate” to optimize the total suppliers’ profit, and (3) the two tiers of the supply chain are centrally coordinated. We show that in a decentralized setting, the supplier with a lower capacity may benefit from restricting her capacity even when additional capacity is available at no cost. We also show that the loss of total profit due to decentralization cannot exceed 25 % of the centralized chain profits. Nevertheless, the loss of total profit is not a monotonic function of the “degree of asymmetry” of the suppliers’ capacities. Furthermore, we provide an upper bound on the supplier profit loss at equilibrium (compared with the cooperation setting) that depends on the “market power” of the suppliers as well as their market size. We show that there is less supplier profit loss as the asymmetry (in terms of their capacities) increases between the two suppliers. The worst case arises when the two suppliers are completely symmetric.  相似文献   
2.
Structural modification at the 2′‐O‐position of riboses in oligonucleotide therapeutics is of critical importance for their use as drugs. To date, the methoxyethyl (MOE) substituent is the most important and features in dozens of antisense oligonucleotides that have been tested in clinical trials. Yet, the search for new improved modifications continues in a quest for increased oligonucleotide potency, improved transport in vivo and favorable metabolism. Recently, we described how the conjugation of spermine groups to pyrimidines in oligonucleotides vastly increases their affinity for complementary RNAs through accelerated binding kinetics. Here we describe how spermines can be linked to the exocyclic amino groups of cytidines in MOE‐oligonucleotides employing a straightforward ‘convertible nucleoside approach’ during solid phase synthesis. Singly‐ or doubly‐modified oligonucleotides show greatly enhanced affinity for complementary RNA, with potential for a new generation of MOE‐based oligonucleotide drugs.  相似文献   
3.
A general approach for the efficient hydrogen‐isotope exchange of nucleobase derivatives is described. Catalyzed by ruthenium nanoparticles, using mild reaction conditions, and involving either D2 or T2 as isotopic sources, this reaction possesses a wide substrate scope and a high solvent tolerability. This novel method facilitates the access to essential diagnostic tools in drug discovery and development: tritiated pharmaceuticals with high specific activities and deuterated oligonucleotides suitable for use as internal standards during LC‐MS quantification.  相似文献   
4.
We study the behavior of multicomponent giant unilamellar vesicles (GUVs) in the presence of AzoTAB, a photosensitive surfactant. GUVs are made of an equimolar ratio of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) and various amounts of cholesterol (Chol), where the lipid membrane shows a phase separation into a DPPC-rich liquid-ordered (L(o)) phase and a DOPC-rich liquid-disordered (L(d)) phase. We find that UV illumination at 365 nm for 1 s induces the bursting of a significant fraction of the GUV population. The percentage of UV-induced disrupted vesicles, called bursting rate (Y(burst)), increases with an increase in [AzoTAB] and depends on [Chol] in a non-monotonous manner. Y(burst) decreases when [Chol] increases from 0 to 10 mol % and then increases with a further increase in [Chol], which can be correlated with the phase composition of the membrane. We show that Y(burst) increases with the appearance of solid domains ([Chol] = 0) or with an increase in area fraction of L(o) phase (with increasing [Chol] ≥ 10 mol %). Under our conditions (UV illumination at 365 nm for 1 s), maximal bursting efficiency (Y(burst) = 53%) is obtained for [AzoTAB] = 1 mM and [Chol] = 40 mol %. Finally, by restricting the illumination area, we demonstrate the first selective UV-induced bursting of individual target GUVs. These results show a new method to probe biomembrane mechanical properties using light as well as pave the way for novel strategies of light-induced drug delivery.  相似文献   
5.
6.
Block copolymers of acryloxy propyl triethoxysilane and styrene were prepared through nitroxide‐mediated polymerization using alkoxyamine initiators based on Ntert‐butyl‐1‐diethylphosphono‐2,2‐dimethylpropyl nitroxide. The copolymers were characterized by 1H NMR, size exclusion chromatography and differential scanning calorimetry. Their micellar behavior in dioxane/methanol solutions was examined through static light scattering and transmission electron microscopy (TEM). TEM indicated the successful formation of spherical micelles which were subsequently frozen by the sol–gel process. Hydrolysis–condensation of the reactive ethoxysilyl side groups was followed by FTIR, 1H NMR, and 29Si NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 784–793, 2010  相似文献   
7.
The interaction of ethene with the Pd(110) surface has been investigated, mainly with a view to understanding the dehydrogenation reactions of the molecule and mainly using a molecular beam reactor. Ethene adsorbs with a high probability over the temperature range 130 to 800 K with the low-coverage sticking probability dropping from 0.8 at 130 K to 0.35 at 800 K. The adsorption is of the precursor type, with a weakly held form of ethene being the intermediate between the gas phase and strong chemisorption. Dehydrogenation begins at approximately 300 K and is fast above 350 K. If adsorption is carried out at temperatures up to approximately 380 K, adsorption saturates after about 0.25 monolayer have adsorbed, but above approximately 450 K, adsorption continues at a high rate with continuous hydrogen evolution and C deposition onto the surface. It appears that, in the intermediate temperature range, the carbonaceous species formed is located in the top layer and thus interferes with adsorption, whereas the C goes subsurface above 450 K, the adsorption is almost unaffected, and the C signal is significantly attenuated in XPS. However, the deposited carbon can easily be removed again by reaction with oxygen, thus implying that the carbon remains in the selvedge, that is, in the immediate subsurface region probably consisting of a few atomic layers. No well-ordered structures are identified in either LEED or STM, though some evidence of a c(2 x 2) structure can be seen. The Pd surface, at least above 450 K, appears to act as a "sponge" for carbon atoms, and this effect is also seen for the adsorption of other hydrocarbons such as acetaldehyde and acetic acid.  相似文献   
8.
Absorption of UV radiation by DNA bases is known to induce carcinogenic mutations. The lesion distribution depends on the sequence around the hotspots, suggesting cooperativity between bases. Here we show that such cooperativity may intervene at the very first step of a cascade of events by formation of Franck-Condon states delocalized over several bases and subsequent energy transfer faster than 100 fs. Our study focuses on the double helix poly(dA).poly(dT), whose fluorescence, induced by femtosecond pulses at 267 nm, is probed by the upconversion technique and time-correlated single photon counting, over a large time domain (100 fs to 100 ns). The time-resolved fluorescence decays and fluorescence anisotropy decays are discussed in relation with the steady-state absorption and fluorescence spectra in the frame of exciton theory.  相似文献   
9.
In the present work, we performed a preclinical inter-comparison study using several photosensitizers with the goal of optimizing photodynamic therapy (PDT) for the treatment of choroidal neovascularization (CNV) associated with age-related macular degeneration. The tested molecules were the porphyrins meso-tetraphenylporphyrin (TPP) and meso-tetra-(4-carboxyphenyl)-porphyrin (TCPP), and the chlorins pheophorbide-a (Pheo-a) and chlorin e(6) (Ce(6)). Each of these molecules was entrapped in biodegradable nanoparticles (NP) based on poly(d,l-lactic acid). The influence of the degree of lipophilicity on the incorporation efficiency of the drug in the NPs, and on the dye leakage from blood vessels as well as on the photothrombic efficiency was investigated using the chick chorioallantoic membrane (CAM) as in vivo model. NP characterization showed that the dye was more effectively entrapped in the polymeric matrix when its degree of lipophilicity increased. While less lipophilic compounds (TCPP, Ce(6)) extravasate rather easily, the more lipophilic dyes (TPP, Pheo-a) tend to remain inside the blood vessels. After injection of a drug dose of 1 mg/kg body weight and a drug-light application interval of 1 min, irradiation with light doses ranging from 5 to 20 J/cm(2) led to the highest photothrombic efficiency when using the NPs loaded with the most lipophilic molecule (TPP). The latter induced vascular damage, which was significantly higher than that observed with the other molecules tested. Thus, in addition to minimal leakage from blood vessels, the TPP in NP formulation exhibited photothrombic efficiency similar to Visudyne which was also tested in the CAM model.  相似文献   
10.
Two Mn(II) complexes are isolated and X-ray characterized, namely, cis-[(L(2))Mn(II)(Cl)(2)] (1) and [(L(3))Mn(II)Cl(OH(2))](ClO(4)) (2(ClO(4))), where L(2) and L(3) are the well-known tetradentate N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine and N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)propane-1,3-diamine ligands, respectively. The crystal structure reveals that whereas the ligand L(2) is in the cis-alpha conformation in complex 1, the ligand L(3) is in the more unusual cis-beta conformation in 2. EPR spectra are recorded on frozen solutions for both complexes and are characteristic of Mn(II) species. Electrochemical behaviors are investigated on acetonitrile solution for both complexes and show that cation 2 exists as closely related Mn(II) species in equilibrium. For both complexes exhaustive bulk electrolyses of acetonitrile solution are performed at oxidative potential in various experimental conditions. In the presence of 2,6-lutidine and after elimination of chloride ligands, the formation of the di-mu-oxo mixed-valent complexes [(L(2))Mn(III)(mu-O)(2)Mn(IV)(L(2))](3+) (3a) and [(L(3))Mn(III)(mu-O)(2)Mn(IV)(L(3))](3+) (4) is confirmed by UV-vis and EPR spectroscopies and cyclic voltammetry. In addition crystals of 4(ClO(4))(3) were isolated, and the X-ray structure reveals the cis-alphaconformation of L(3). In the absence of 2,6-lutidine and without elimination of the exogenous chloride ions, the electrochemical oxidation of 1 leads to the formation of the mononuclear Mn(III) complex, namely, [(L(2))Mn(III)(Cl)(2)](+) (5), as confirmed by UV-vis as well as parallel mode EPR spectroscopy and cyclic voltammetry. In the same conditions, the electrochemical oxidation of complex 2 is more intricate, and a thorough analysis of EPR spectra establishes the formation of the binuclear mono-mu-oxo mixed-valent [(L(3))ClMn(III)(mu-O)Mn(IV)Cl(L(3))](3+) (6) complexes. Electrochemical conversion of Mn(II) complexes into mixed-valent Mn(2)(III,IV) oxo-bridged complexes in the presence of 2,6-lutidine is discussed. The role of the chloride ligands as well as that of L(3) in the building of oxo bridges is discussed. Differences in behavior between L(2) and L(3) are commented on.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号