首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   5篇
化学   5篇
物理学   15篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有20条查询结果,搜索用时 812 毫秒
1.
NOO-type tridentate Schiff base, N-salicylidene-2-aminobenzoic acid, (H2L), and its ternary Cu (II) complex containing H2L Schiff base and 4,7-dimethyl-1,10-phenanthroline (4,7-dmphen), [Cu(4,7-dmphen)(H2L)]27H2O, have been synthesized and characterized by CHN analysis, ESI-MS, FTIR, and single-crystal X-ray diffraction techniques. The interaction of alone H2L Schiff base ligand and ternary Cu (II) complex with biomacramolecules {calf thymus DNA (CT-DNA) and bovine serum albumin (BSA)} has been investigated by electronic absorption and fluorescence spectroscopy. The experimental results indicate that H2L Schiff base ligand and ternary Cu (II) complex bind to CT-DNA by means of a moderate intercalation mode. Furthermore, the fluorescence quenching mechanism between H2L Schiff base ligand and ternary Cu (II) complex with BSA possesses a static quenching process. Radical scavenging activity of H2L Schiff base ligand and ternary Cu (II) complex was measured in terms of EC50, using the DPPH and H2O2 methods. Biomacromolecule interactions and scavenging activity studies revealed that ternary Cu (II) complex yielded better results than H2L Schiff base ligand alone.  相似文献   
2.
Tight-binding transferable parameters are created to reproduce ab initio energies of hydrogen-terminated Si-nanocrystals in order to extend the study of electronic and 0th order optical properties, through the HOMO–LUMO energy gap, to other larger or less symmetric silicon nanocrystals. For practical reasons the study is restricted to clusters where each Si atom has either three or no H neighbors. Results obtained so far are promising for future improvements and extensions to other systems.  相似文献   
3.
4.
5.
6.
We have calculated the Compton profiles of V, Nb, VH2 and NbH2 using the self-consistent augmented plane wave (APW) method within the local-density approximation of Hedin-Lundqvist. The results are compared with other theoretical works and available experiments. In going from the pure metals to the metal dihydrides we observe significant changes in the directional Compton profiles due to their different band structures.  相似文献   
7.
熊庄  Bacalis N C 《中国物理》2006,15(5):992-997
An analytic configuration interaction method based on variationally optimized internally orthogonalized modified Laguerre orbitals is presented. We have developed the corresponding computer code. For application, we study the 1s2s $^{1}S$ isoelectronic sequence from helium to neon, and compare with other methods. By taking into account the Eckart upper-bound theorem, we obtained more accurate and more intuitively understandable results than Hartree--Fock and multi-configuration Hartree--Fock reported results.  相似文献   
8.
熊庄  Bacalis N C 《中国物理 B》2009,18(2):542-548
This paper develops a Fortran code which is capable to construct the simplest LS eigenfunctions for desired symmetry and determine all permitted atomic LS spectral terms under a given orbital occupancy by implementing and extending the Schaefer and Harris method. Examples (in some cases the most complete set to date) of multiple spectroscopic terms of LS coupling of atomic states for both non-equivalent and equivalent electronic configurations are given. It also corrects a few observed errors from the recent literature.  相似文献   
9.
熊庄  BacalisN. C. 《中国物理 B》2010,19(2):23601-023601
We have developed a computer code for {\em ab initio} the variational configuration interaction calculation of the electronic structure of atoms via variationally optimized Lagurre type orbitals, treating the orbital effective charges as variational parameters. Excited states of the same symmetry, in order to avoid the inherent restrictions of the standard method of Hylleraas--Unheim and MacDonald, are computed variationally by minimizing the recently developed minimization functionals for excited states. By computing, at the minimum, the one-electron density and the probability distribution of the two-electron angle, and the most probable two-electron angle, we investigate the atomic states of the carbon atom. We show that, without resorting to the (admittedly unproven) concept of hybridization, as an intrinsic property of the atomic wave function, the most probable value of the two-electron angle is around the known angles of carbon bonding, i.e. either 109^\circ or 120^\circ or 180^\circ, depending on each low-lying state of the bare carbon atom.  相似文献   
10.
In order to understand the catalytic activity of small metal clusters as a function of their size, we have studied the interaction of CH4 with Al4 and Al5 neutral and charged clusters, as well as neutral thermally expanded clusters in the two lowest lying spin states, using density functional theory. These calculations, via extended search, are used to determine the stable positions of H and CH3 near the cluster, and the transition state to break the H─CH3 bond. In order to understand the factors underlying the reactivity of the clusters, we have analyzed the electronic structure at the transition state. By an analysis of the change of the electronic density of states close to the transition state, we identify the orbitals involved in the bond breaking process. In conjunction with our previous studies of Al2 and Al3 clusters, we find that the small Al clusters, except for Al5, lower the CH3─H dissociation barrier with respect to the gas-phase value, although Al lacks occupied d-orbitals. Still, Al5 does not catalyze methane bond breaking, which is attributed to the required interaction with low-lying Al sp-states. Furthermore, in all cases where stable methyl-aluminum-hydrides are possible, the recombinative desorption of methane is studied by vibrational analysis and application of transition state theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号