In the context of phenomenological models in which the soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, Min, above the GUT scale, MGUT, it is possible that all the scalar mass parameters m0, the trilinear couplings A0 and the bilinear Higgs coupling B0 vanish simultaneously, as in no-scale supergravity. Using these no-scale inputs in a renormalisation-group analysis of the minimal supersymmetric SU(5) GUT model, we pay careful attention to the matching of parameters at the GUT scale. We delineate the region of Min, m1/2 and tan?β where the resurrection of no-scale supergravity is possible, taking due account of the relevant phenomenological constraints such as electroweak symmetry breaking, mh,b→sγ, the neutralino cold dark matter density Ωχh2 and gμ?2. No-scale supergravity survives in an L-shaped strip of parameter space, with one side having m1/2?200 GeV, the second (orthogonal) side having Min?5×1016 GeV. Depending on the relative signs and magnitudes of the GUT superpotential couplings, these may be connected to form a triangle whose third side is a hypotenuse at larger Min, m1/2 and tan?β, whose presence and location depend on the GUT superpotential parameters. We compare the prospects for detecting sparticles at the LHC in no-scale supergravity with those in the CMSSM and the NUHM. 相似文献
Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications. 相似文献
This paper reports a microfluidic system for biophysical characterization of red blood cells (RBCs) at a speed of 100-150 cells s(-1). Electrical impedance measurement is made when single RBCs flow through a constriction channel that is marginally smaller than RBCs' diameters. The multiple parameters quantified as mechanical and electrical signatures of each RBC include transit time, impedance amplitude ratio, and impedance phase increase. Histograms, compiled from 84,073 adult RBCs (from 5 adult blood samples) and 82,253 neonatal RBCs (from 5 newborn blood samples), reveal different biophysical properties across samples and between the adult and neonatal RBC populations. In comparison with previously reported microfluidic devices for single RBC biophysical measurement, this system has a higher throughput, higher signal to noise ratio, and the capability of performing multi-parameter measurements. 相似文献
A combination of molybdatophosphoric acid and NaNO2 in the presence of wet SiO2 was used as an effective oxidizing agent for the oxidation of 1,2‐dihydroquinolines to their corresponding quinoline derivatives in dichlomethane at room temperature with excellent yields. 相似文献
An electroanalytical strategy for the simultaneous determination of ascorbic acid (AA) and dehydroascorbic acid (DHA), is described. A palladized Al electrode is used for hydrodynamic amperometry of AA. While the decrease of anodic stripping voltammetry current of the K2UO2[Fe(CN)6]‐Pd/Al electrode prepared in the presence of DHA was the principal of the DHA determination. The calibration graph for both methods was linear over the concentration range 1–50 μM. The detection limit was found to be 0.5 μM. Some fresh fruit juices and vegetables of trace level of AA and DHA were analyzed as the typical example of application. 相似文献
A sensitive method based on liquid chromatography combined with a diode array detector was developed and validated to simultaneously determine tamoxifen, and its active metabolites N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen in human plasma samples. The green and sustainable vortex-assisted dispersive liquid-phase microextraction technique based on the natural hydrophobic deep eutectic solvent was used for the extraction and preconcentration of the analytes. Chemometrics and multivariate analysis were used to optimize the independent variables including the type and volume of deep eutectic solvent, extraction time, and ionic strength. Under optimal conditions, calibration curves were linear in a suitable range with the lower limits of quantification (0.8–10.0 μg/L), which covered the relevant concentrations of the analytes in plasma samples for a clinical study. Intra- and interday precision evaluated at three concentrations for the analytes were lower than 8.2 and 12.1%, respectively. Accuracy was in the range of 94.9–104.7%. The applicability of the developed method on human plasma samples illustrated the range 45.1–72.8, 98.4–128.3, 0.9–1.2, and 2.7–6.1 μg/L for tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen, respectively. The validated method can be effective for the pharmacokinetics, pharmacodynamics, and therapeutic drug monitoring studies of tamoxifen and its main metabolites in biological fluids. 相似文献
Fabricating mechanically strong hydrogels that can withstand the conditions in internal tissues is a challenging task. We have designed hydrogels based on multicomponent systems by combining chitosan, starch/cellulose, PVA, and PEDOT:PSS via one-pot synthesis. The starch-based hydrogels were homogeneous, while the cellulose-based hydrogels showed the presence of cellulose micro- and nanofibers. The cellulose-based hydrogels demonstrated a swelling ratio between 121 and 156%, while the starch-based hydrogels showed higher values, from 234 to 280%. Tensile tests indicated that the presence of starch in the hydrogels provided high flexibility (strain at break?>?300%), while combination with cellulose led to the formation of stiffer hydrogels (elastic moduli 3.9–6.6 MPa). The ultimate tensile strength for both types of hydrogels was similar (2.8–3.9 MPa). The adhesion and growth of human osteoblast-like SAOS-2 cells was higher on hydrogels with cellulose than on hydrogels with starch, and was higher on hydrogels with PEDOT:PSS than on hydrogels without this polymer. The metabolic activity of cells cultivated for 3 days in the hydrogel infusions indicated that no acutely toxic compounds were released. This is promising for further possible applications of these hydrogels in tissue engineering or in wound dressings.
A powerful algorithmic technique for truthful mechanism design is the maximal-in-distributional-range (MIDR) paradigm. Unfortunately, many such algorithms use heavy algorithmic machinery, e.g., the ellipsoid method and (approximate) solution of convex programs. In this paper, we present a correlated rounding technique for designing mechanisms that are truthful in expectation. It is elementary and can be implemented quickly. The main property we rely on is that the domain offers fractional optimum solutions with a tree structure. In auctions based on the generalized assignment problem, each bidder has a publicly known knapsack constraint that captures the subsets of items that are of value to him. He has a private valuation for each item and strives to maximize the value of assigned items minus payment. For this domain we design a truthful 2-approximate MIDR mechanism for social welfare maximization. It avoids using the ellipsoid method or convex programming. In contrast to some previous work, our mechanism achieves exact truthfulness. In restricted-related scheduling with selfish machines, each job comes with a public weight, and it must be assigned to a machine from a public job-specific subset. Each machine has a private speed and strives to maximize payments minus workload of jobs assigned to it. Here we design a mechanism for makespan minimization. This is a single-parameter domain, but the approximation status of the optimization problem is similar to unrelated machine scheduling: The best known algorithm obtains a (non-truthful) 2-approximation for unrelated machines, and there is 1.5-hardness. Our mechanism matches this bound with a truthful 2-approximation. 相似文献