首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
化学   31篇
晶体学   1篇
力学   2篇
数学   2篇
物理学   5篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2003年   3篇
  1998年   1篇
  1997年   3篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
(100-x) mole% SiO2-x mole% P2O5-glasses withx=1–9 have been prepared by the sol-gel process using tetraethylorthosilicate and triethylphosphate as precursors. The gels were fired at various temperatures up to 950°C and then exposed to γ-ray irradiation to induce paramagnetic centers. CW-EPR and FT-EPR Spectroscopies were employed at temperatures between 4 and 300 K in order to determine the resulting structures. The dried gels exhibited four types of O 2 -ions trapped in pores of different sizes. The gels fired atT=670°C exhibited theE’ 1-center and non-bridging oxygen as a results of the fracture of the Si-O-Si bonds. At higher temperatures, the spectra of the POHC, POHC b ,E’, and CH 3 -centers have been detected that are a function ofx andT.  相似文献   
2.
Microemulsions composed of olive oil, either extravirgin (EVOO) or refined (ROO), as the continuous oil phase, water as the dispersed phase, and a mixture of lecithin-propanol as the emulsifier were prepared and investigated as potential biocompatible media for biotransformations. The area of the microemulsion zone increased considerably by increasing the lecithin to propanol weight ratio in both EVOO- and ROO-based systems. However, the nature of the oil used does not seem to affect the ability of the system to incorporate water. The catalytic activities of two oxidizing enzymes that have been detected in virgin olive oil, namely, tyrosinase and peroxidase, and the activity of a proteolytic enzyme such as trypsin were studied in olive oil microemulsions. In all cases a reduced catalytic activity was observed when ROO was considered as the continuous oil phase. The interfacial properties of lecithin layers were studied by electron paramagnetic resonance spectroscopy employing the nitroxide spin probe 5-doxylstearic acid. By varying the weight ratio of lecithin to propanol and the water content of the microemulsions, the mobility of the probe and the rigidity of the interface were altered. Droplet sizes were measured by dynamic light scattering. At higher water content of the system the size of the droplets was increased. When EVOO was considered as the oil phase, smaller aqueous droplets were formed. Lecithin-based olive oil microemulsions were also characterized with regard to the phenomenon of electrical percolation. At a water content above 3% (w/w) and a lecithin/propanol weight ratio of 2, a sharp increase in conductivity was observed, indicating a structural transition in the bicontinuous form.  相似文献   
3.
Enzymatically digested oligosaccharides of kappa-carrageenans were separated on a porous graphitic carbon (PGC) column and characterised on-line by electrospray ionisation mass spectrometry (ESI-MS). Two different developing ions were applied. Among them ammonium hydrogencarbonate showed more eluting power as it should on normal anion-exchange stationary phases. The oligosaccharides were detected by ESI-MS as fully deprotonated oligosaccharides.  相似文献   
4.
The chemiluminescent oxidation of sulphite by bromate was investigated and compared with that by cerium(IV). The reaction is sensitized by various steroid hormones which can thus be determined in the ranges 0.50–20.0μg ml 1 for cortisone; 0.50–5.00 μg ml?1 for hydrocortisone and progesterone and 0.50–6.00 μg ml?1 for testosterone and corticosterone.  相似文献   
5.
The present article demonstrates a simple, eco-friendly route for the fabrication of carbon nanotubes (CNTs) with different morphologies, including the fascinating bamboo-like structures without complex catalyst/support preparation procedures. A thermal chemical vapor deposition (CVD) technique that utilized natural pozzolan supports and a solid carbon source, that is, a mixture of camphor and ferrocene in a weight ratio of 20:1, was carried out at different temperatures where the ferrocene played also the role of catalyst. The pozzolan chemical composition and mineral identification were determined by energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The morphology of the fabricated CNTs was studied via scanning and transmission electron microscopies (SEM and TEM). It was revealed that both conventional tubular and bamboo-like nanotubes grow at 750 °C while the bamboo-like morphology prevails at 850 °C. The better nanostructure uniformity at higher deposition temperature was accompanied by an improved nanotube graphitization degree that was verified by Raman spectroscopy. Yet, the reduction of the CNTs production yield was recorded by thermogravimetric analysis (TGA). The experimental data are interpreted and discussed as an interplay between the CNTs processing temperature, morphology and growth mechanism. Thus, the growth of either tubular or bamboo-like nanostructures is suggested to be ruled by the competitive surface and bulk diffusions of carbon onto and into the catalyst surface. The growth depends on the size of catalyst nanoparticles sintered at different temperatures. The favorable role of the pozzolan supporting materials in the formation of bamboo-like tubes is emphasized.  相似文献   
6.
Preparation of hydroxyapatite via microemulsion route   总被引:7,自引:0,他引:7  
Hydroxyapatite (HAp) was prepared using a microemulsion route in combination with the pH-shock wave method. The samples as received consisted of amorphous aggregated particles, which had remarkable mesoporosity with a narrow pore size distribution. After being heated at 650 degrees C, the A-type carbonate hydroxyapatite was crystallized at 635 degrees C in particles of similar size (40--120 nm) with no internal porosity. At a higher temperature (900 degrees C) a sintering process took place, resulting in network of a larger particles, consisting of HAp and beta-tricalcium phosphate (beta-TCP). The crystallization of HAp occurs at 635 degrees C with an activation energy of 62.7--72.2 kcalmol(-1).  相似文献   
7.
Enzymatically digested oligosaccharides of kappa-, iota- and hybrid iota/nu-carrageenans were analysed using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry in the negative-ion mode. nor-Harmane was used as matrix. Depending on the stock concentration and the laser intensity applied, the oligosaccharides exhibited losses of sulphate units (neutralised by the Na+ ion, and thus non-stable), leaving the primary backbone structure in most cases with only the deprotonated sulphate groups (carrying the negative charge, stable). This meant that kappa- and iota-oligosaccharides could not be easily distinguished from one another since they share the same primary backbone structure. However, for the hybrid iota/nu-oligosaccharides the primary backbone structure could be identified since the nu-carrageenan repeating unit differs from that of the kappa/iota-carrageenan unit. For all types of oligosaccharides, the results indicated cleavage of an anhydrogalactose unit from the non-reducing end. Specifically, for the hybrid oligosaccharides of iota/nu-carrageenans, this type of fragmentation means that the nu-carrageenan unit is not positioned on the non-reducing end of the hybrid oligosaccharides. Dehydration reactions, and exchange reactions of Na+ with K+ and Ca2+, were also observed.  相似文献   
8.
Carbohydrate-protein linkage region of proteoglycans is a key oligosaccharide structure because their sulphated and/or phosphorylated analogues control the biosynthesis of glucosaminoglycans or galactosaminoglycans. Therefore, synthesised sulphated and/or phosphorylated analogues were characterised by tandem mass spectrometry in the negative-ion mode. Results demonstrated that the product ion profile was characterised by glycosidic and cross-ring cleavages depending on the position and the type of the charged group (sulphate, phosphate or carboxylate). When the above compounds were sulphated and phosphorylated, the ion found at m/z 79 was the only one that demonstrated a phosphate group on the structure. The data also suggested that when a sodium cation was present in a sulphated and phosphorylated structure, the phosphate group in most cases was neutralised by the sodium cation, and therefore cleaved off the molecule, while the sulphate group was carrying the negative charge.  相似文献   
9.
In the present work, composite copper containing silicate thin coatings (Cu/SiO2) were prepared on glass substrates by the sol-gel route. The preparation process included hydrolysis and subsequent polycondensation of corresponding alkoxide under refluxing and addition of soluble salt of antibacterial metal to the resulting sol. The coatings deposited by dipping process, were thermally treated in oxidative and reductive conditions up to 500°C for metal nanoparticles formation. The coating structure and the nanoparticles formation were studied by the X-ray Diffraction (XRD), UV-VIS and Heavy Ion Rutherford Backscattering (HIRBS) Spectroscopies. The antibacterial activity against Escherichia Coli was examined by the so-called antibacterial-drop test. The possible correlation between the layer interdiffusion after the thermal treatment and the antibacterial activity was considered and analyzed. The coatings exhibited a high antibacterial activity, which was enhanced with the increase of the metal concentration and was decreased with the increase of temperature of thermal treatment and metal nanoparticles formation.  相似文献   
10.
Mesoporous anatase TiO2 materials with specific surface areas between 70 and 110 m2 g?1 were prepared via sol–gel technique using surfactants oleic acid and Triton-X (TX), in the presence or absence of diethanolamine, in methanol. Surfactants like TX or oleic acid (OA), as well as a gelating and chelate agent like diethanolamine (DEA) are commonly used in TiO2 formation from a titanium isopropoxide solution. Thermogravimetric methods were applied in order to evaluate the effect of the addition of such molecules in a precursor suspension before TiO2 materials preparation. The in situ investigation of such systems showed that numerous interactions occur between large molecules such as TX and OA that attributed on both steric effects and hydrogen bond formation. Materials prepared through modified sol–gel technique seem to be stabilized through DEA addition in the precursor suspension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号