首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
物理学   20篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究。采集浙江省文城地区农田土壤样品近红外光谱数据,土壤样品数为394个。为简化模型,采用遗传算法结合连续投影算法挑选出18个特征波长建模,应用偏最小二乘回归建立有机质预测模型,建模集的决定系数为0.81,均方根预测误差为0.22, 剩余预测偏差为2.31,预测集的决定系数为0.83,均方根预测误差为0.20,剩余预测偏差为2.45。研究发现,遗传算法结合连续投影算法在简化模型同时,模型的预测评价指标同采用全谱波长建模并没有明显降低。因此,遗传算法结合连续投影算法挑选的特征波长可以应用于近红外光谱检测土壤有机质含量。  相似文献   
2.
采用紫外可见光谱(UV-Vis)与极限学习机算法检测水体化学需氧量(chemical oxygen demand,COD)含量研究。采集135份水样进行紫外可见波段全光谱扫描,结合变量标准化(standard normal variate,SNV),多元散射校正(MSC)和一阶微分(1st D)对原始数据进行预处理,然后采用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、随机青蛙(Random frog)算法和遗传算法进行特征波长选择。基于全光谱建立了偏最小二乘回归(partial least squares,PLS)和基于特征波长建立了极限学习机算法(extreme learning machine,ELM)模型。结果表明:使用CARS提取的9个特征波长建立的ELM模型的预测效果最优,决定系数R2为0.82,预测均方根误差RMSEP为 14.48 mg·L-1,RPD值为2.34。说明使用CARS变量选择算法获取UV-Vis光谱特征波长,应用极限学习机建模,可以准确、快速的检测养殖水体中COD含量,为实现养殖水体COD的动态快速检测以及水体其他微量物质含量参数检测打下基础。  相似文献   
3.
基于近地高光谱成像技术结合化学计量学方法,实现了黑豆品种的鉴别。实验以三种不同颜色豆芯的黑豆为研究对象,采用高光谱成像系统采集380~1 030 nm波段范围的高光谱图像,提取高光谱图像中的样本感兴趣区域平均光谱信息作为样本的光谱进行分析,建立黑豆品种的判别分析模型。共采集180个黑豆样本的180条平均光谱曲线。剔除明显噪声部分之后以440~943 nm范围光谱为黑豆样本的光谱,采用多元散射校正(multiplicative scatter correction,MSC)对光谱曲线进行预处理。分别以全部光谱数据、主成分分析(principal component analysis,PCA)提取的光谱特征信息、小波分析(wavelet transform,WT)提取的光谱特征信息建立了偏最小二乘判别分析法(partial least squares discriminant analysis,PLS-DA),簇类独立模式识别法(soft independent modeling of class analogy,SIMCA),最邻近节点算法(K-nearest neighbor algorithm,KNN),支持向量机(support vector machine,SVM), 极限学习机(extreme learning machine,ELM)等判别分析模型。以全谱的判别分析模型中,ELM模型效果最优;以PCA提取的光谱特征信息建立的模型中,ELM模型也取得了最优的效果;以WT提取的光谱特征信息建立的模型中,ELM模型结识别效果最好,建模集和预测集识别正确率达到100%。在所有的判别分析模型中,WT-ELM模型取得了最优的识别效果。实验结果表明以高光谱成像技术对黑豆品种进行无损鉴别是可行的,且WT用于提取光谱特征信息以及ELM模型用于判别黑豆品种能取得较好的效果。  相似文献   
4.
重金属污染一直影响着人们的健康生活,如镉,铅和铜等的污染,故而土壤重金属的快速检测和如何预防,一直受各国学者关注和研究。传统土壤重金属检测方法(如原子吸收光谱法、X荧光光谱法等)样品预处理复杂,分析成本较高,易形成样品的二次污染,不能满足快速分析的要求。激光诱导击穿光谱(LIBS)是一种典型的原子发射光谱,它是基于分析物质中原子和离子受激发而发射的特征谱线信息,进而研究物质成分的分析方法。LIBS技术能够快速检测任何状态(固、液和气态)物质元素的成分和含量,被看作是未来化学检测和快速绿色分析领域的新兴技术。LIBS技术具有对样本简单预处理(或不需要处理)、多元素同步分析、远距离测量、适用性广等优势,被广泛用于生活生产的各个领域,已成为近年来国内外学者广泛关注和研究的热点之一。在农业信息快速感知的大背景下,以激光诱导击穿光谱技术为技术手段,以土壤重金属铅元素为研究对象,运用理论分析和数学建模相结合,建立了多种基于单变量定标曲线的土壤重金属铅检测模型,并进行了模型验证。自制15个已知的铅元素浓度梯度的谱线土壤样本,在获取了土壤LIBS数据之后,对其进行预处理对比,建立了基于谱峰强度、谱峰积分、洛伦兹拟合强度三种定标曲线模型,对土壤中铅元素含量进行定量分析,得出基于三种定标曲线模型对土壤中铅元素含量的预测决定系数R2分别为0.918 0,0.910 1和0.914 3,三种定标曲线分析方法的预测结果都较好,说明了LIBS结合单变量定标曲线法对土壤中铅含量的检测可靠性高。最后选取部分样本数据进行验证,结果较好。研究结果为研发便携式农田土壤污染物检测技术与装备提供技术支撑,也为农田精准管理和科学施肥奠定基础。  相似文献   
5.
快速测量十六烷值对检测柴油品质及控制炼制工艺具有重大意义。首先对采集到的381份柴油样品进行近红外可见光谱波段全光谱扫描,利用小波分析(WT)对原始数据进行去噪声处理,应用竞争性自适应重加权算法(CARS)进行特征波长选择,将CARS提取的22个特征波长输入至LS-SVM预测模型,决定系数r2为0.723,预测均方根误差RMSEP为1.878%。结果表明,使用WT-CARS变量选择算法获取光谱特征波长,结合LS-SVM建模,可以快速、准确的测量柴油中的十六烷值,为进一步实现柴油十六烷值的在线检测以及其他性能参数的快速测定奠定了基础。  相似文献   
6.
鱼类产品新鲜度鉴别一直是重要的研究课题,相较于目前常规鱼类品质检测方法存在的成本高、检测时间长等问题,高光谱成像技术(HSI)因其无损、快速等优势得到了学者的广泛研究。卷积神经网络是深度学习中应用较为广泛的模型,表达能力强,模型效率高。因此,使用卷积神经网络(CNN)结合高光谱成像技术建立多宝鱼新鲜度鉴别模型。采集160个多宝鱼样本感兴趣区域(ROI)光谱,并根据样本不同冻融次数和冷冻时间分为5类新鲜度。以VGG11网络为基础,针对光谱数据特点对网络结构进行调整,减少全连接层数量,降低模型的复杂度,分别对比不同卷积核个数、激活函数对分类性能造成的影响,确定最佳CNN网络结构。由于高光谱数据量大同时存在的冗余信息较多,分别采用无信息变量消除算法(UVE)和随机青蛙算法(RF)对高光谱数据进行波长筛选,将波长筛选后的高光谱数据分别输入卷积神经网络(CNN)、最小二乘支持向量机(LS-SVM)、 K最近邻算法(KNN)建立模型。采用无信息变量消除(UVE)提取的165个特征波长建立的UVE-CNN模型鉴别效果最佳,分类模型在测试集上的精度达到了100%。结果表明,利用卷积神经网络与高光谱成像...  相似文献   
7.
提出了一种利用高光谱成像技术检测三文鱼水分含量并实现其可视化的新方法。采集不同水分含量的共100个鱼肉样本的高光谱图像,并提取样本感兴趣区域(ROI)的平均光谱。75个样本用于建模集,采用连续投影算法对原始光谱提取特征波长,利用提取的特征波长替代原始光谱,采用PLS建立预测模型,对25个预测集样本的水分含量进行预测,预测决定系数(R2)为0.904,预测均方根误差(RMSEP)为1.169%,获得了满意的预测精度。最后,用所建模型对预测集图像上每个像素点的水分含量进行预测,利用Matlab语言编程,三文鱼肉表面不同部位的水分分布采用不同颜色表示,进而实现三文鱼肉水分含量的可视化。结果表明,高光谱成像技术与化学计量学结合可以准确预测鱼肉的水分含量,与图像处理方法结合可以实现预测时间的可视化,能形象、直观地展示出鱼肉的水分含量分布情况,为实现水产品加工的自动化奠定了基础。  相似文献   
8.
应用高光谱成像技术鉴别绿茶品牌研究   总被引:4,自引:0,他引:4  
应用高光谱成像技术,基于光谱主成分信息和图像信息的融合实现名优绿茶不同品牌的鉴别。首先采集6个品牌名优绿茶在380~1 023 nm波长范围的512幅光谱图像,然后提取并分析绿茶样本的可见近红外光谱响应特性,结合主成分分析法找到了最能体现这6类样本差异的2个特征波段(545和611 nm),并从这2个特征波段图像中分别提取12个灰度共生矩阵纹理特征参量包括中值、协方差、同质性、能量、对比度、相关、熵、逆差距、反差、差异性、二阶距和自相关,最后融合这12个纹理特征和三个主成分特征变量得到名优绿茶品牌识别的特征信息,利用LS-SVM建立区分模型,预测集识别率达到了100%,同时采用ROC曲线的评估方法来评估分类模型。结果表明综合应用灰度共生矩阵变量和光谱主成分变量作为LS-SVM模型输入可实现对绿茶品牌的鉴别。  相似文献   
9.
PCA和SPA的近红外光谱识别白菜种子品种研究   总被引:2,自引:0,他引:2  
为了实现对不同品种白菜种子的快速无损鉴别,应用近红外光谱技术获取白菜种子的光谱反射率,首先采用变量标准化校正和多元散射校正对原始光谱进行预处理;其次,采用主成分分析法(PCA)对光谱数据进行聚类分析,从定性分析的角度得到三种不同白菜种子的特征差异,并采用连续投影算法(SPA)选取特征波长;最后,分别基于全波段光谱、PCA分析得到的前3个主成分变量以及SPA算法选取的特征波长,建立了最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型进行白菜种子不同品种的鉴别。从主成分PC1、PC2得分图中可以看出,主成分1和2对不同种类白菜种子具有很好的聚类作用。基于特征波长建立的PLS-DA和LS-SVM模型的判别结果优于基于主成分变量建立的模型,其中基于特征波长建立的LS-SVM模型识别效果最优,建模集和预测集的品种识别率均达到100%。结果表明,通过SPA算法选取的6个特征波长变量能够很好的反映光谱信息,提出的SPA算法结合LS-SVM预测模型能获得满意的分类结果,为白菜种子品种的识别提供了一种新方法。  相似文献   
10.
应用高光谱成像技术对打蜡苹果无损鉴别研究   总被引:3,自引:0,他引:3  
探讨应用高光谱成像技术快速无损鉴别不同苹果蜡的可行性。通过对分别打食用果蜡、工业蜡和未打蜡的126个苹果样品,采用380~1 024 nm范围的高光谱图像仪获取三类苹果的高光谱图像信息,采用ENVI软件处理平台提取高光谱图像中对象的漫反射光谱响应特性。从126个样品中随机取出84个样品建模,其余42个样品作为独立的验证集。对光谱数据分别采用偏最小二乘(PLS)、最小二乘支持向量机(LS-SVM)和BP神经网络等建立高光谱响应特征与食用蜡苹果、工业蜡苹果、未打蜡苹果的关系模型,比较不同建模方法的效果。结果表明:采用MSC-SPA-LS-SVM模型可以较好的区分食用果蜡、工业蜡和未打蜡的三类苹果,预测结果的正确率分别为100%,100%和92.86%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号