排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
运用电化学阻抗谱(EIS)和循环伏安法(CV)研究了在1mol/LLiPF6-EC(碳酸乙烯酯):DMC(碳酸二甲酯)电解液中添加Li2CO3对石墨电极性能的影响及机制.CV研究结果表明,在1mol/LLiPF6-EC:DMC电解液中添加Li2CO3能够有效抑制石墨电极首次充放电过程中碳酸乙烯酯(EC)的单电子还原过程,即还原分解产生乙烯和碳酸锂的过程,进而改善石墨电极的电化学循环性能.EIS研究结果表明,在添加Li2CO3的1mol/LLiPF6-EC:DMC电解液中,石墨电极表面的固体电解质相界面膜(SEI膜)具有较强的黏弹性,可以更好地适应锂离子嵌入过程中石墨颗粒体积的微小变化,从而使锂离子的嵌入过程更容易进行. 相似文献
2.
3.
4.
分别采用球磨法和高温热解法制备了Si/C复合材料,XRD、SEM、电化学阻抗谱、循环伏安法和恒流充放电测试表征该Si/C复合材料的结构、形貌和电化学性能.结果表明,相比于球磨法,高温热解HDPE制备的Si/C复合材料颗粒形貌规则,碳的包覆较为均匀,导电性较好,阻抗较小.该复合材料首次嵌锂容量为4495 mAh/g,首次库仑效率65.3% ,从第2周开始库仑电效率都保持在97% 左右,经过100次充放电循环后仍能达到438 mAh/g的可逆容量,具有较好的电化学循环稳定性. 相似文献
5.
LiTi2(PO4)3/C 复合材料的制备及电化学性能 总被引:1,自引:0,他引:1
采用聚乙烯醇(PVA)辅助溶胶-凝胶法合成了具有Na+超离子导体(NASICON)结构的LiTi2(PO4)3/C复合材料.运用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等对其结构形貌和电化学性能进行表征.实验结果表明:合成的LiTi2(PO4)3/C具有良好的NASICON结构,首次放电容量为144mAh·g-1.电化学阻抗谱测试结果显示,LiTi2(PO4)3/C复合材料电极在首次嵌锂过程中分别出现了代表固体电解质相界面(SEI)膜及接触阻抗、电荷传递阻抗和相变阻抗的圆弧,并详细分析了它们的变化规律.计算了Li+在LiTi2(PO4)3中嵌入/脱出时的扩散系数,分别为2.40×10-5和1.07×10-5cm2·s-1. 相似文献
6.
7.
以三维多孔泡沫铜为基底, 通过直接电沉积的方法制备锂离子电池Cu6Sn5合金负极材料. 发现合金表面大量的微孔和“小岛”不仅增大电极的表面积, 而且显著缓解充放电过程中的体积变化. 测得三维多孔Cu6Sn5合金的初始放电(嵌锂)容量为620 mAh·g-1, 充电(脱锂)容量为560 mAh·g-1, 库仑效率达到90.3%, 具有较好的循环性能. 扫描电子显微镜(SEM)结果显示, 在泡沫铜基底上制备的Cu6Sn5合金电极具有比通常的铜片基底更好的结构稳定性, 经过50 周充放电循环后无明显的脱落现象. 相似文献
8.
温度对尖晶石LiMn2O4中锂离子嵌脱过程的影响 总被引:1,自引:0,他引:1
运用电化学阻抗谱研究了商品化尖晶石LiMn2O4电极在1 mol/L LiPF6-EC(碳酸乙烯酯):DEC(碳酸二乙酯)电解液中―10~30 ℃范围内的阻抗谱特征、固体电解质相界面(SEI)膜阻抗、电子电阻和电荷传递电阻等随温度的变化. 研究结果表明, 尖晶石LiMn2O4电极的阻抗谱特征与温度有关, 随温度的升高, 与活性材料电子电导率相关的半圆和与SEI膜相关的半圆会发生重叠而成为一个半圆. 通过选取适当的等效电路拟合了实验所得的电化学阻抗谱数据, 测得尖晶石LiMn2O4电极在1 mol/L LiPF6-EC:DEC 电解液中, 锂离子迁移通过SEI膜的离子跳跃能垒平均值为15.49 kJ/mol; 电子电导率的热激活化能平均值为24.21 kJ/mol; 嵌入反应活化能平均值为53.07 kJ/mol. 相似文献
9.
运用电化学阻抗谱(EIS)研究了尖晶石LiMn2O4正极在1mol·L-1LiPF6-EC(碳酸乙烯酯)∶DEC(碳酸二乙酯)∶DMC(碳酸二甲酯),1mol·L-1LiPF6-EC∶DEC∶EMC(碳酸甲乙酯)和1mol·L-1LiPF6-EC∶DMC三种不同电解液中,-20-20℃范围内的阻抗谱特征随温度的变化.研究结果表明,温度强烈影响尖晶石LiMn2O4正极的阻抗谱特征,而电解液组成对尖晶石LiMn2O4正极阻抗谱特征的影响较小,但电解液组成对锂离子在尖晶石LiMn2O4正极中嵌入脱出过程相关动力学参数影响较大.测得尖晶石LiMn2O4正极在上述三种电解液中,锂离子迁移通过固体电解质相界面(SEI)膜的离子跳跃能垒平均值分别为7.60、16.40和18.40kJ·mol-1;电子电导率的热激活化能平均值分别为44.77、35.47和68.06kJ·mol-1;嵌入反应活化能平均值分别为52.19、46.19和69.86kJ·mol-1. 相似文献
10.
以粗糙铜箔为基底,采用一步电沉积法获得Cu-Sn合金,X射线衍射(XRD)测试结果显示其主要为Cu6Sn5合金相.扫描电子显微镜(SEM)测试结果表明该合金表面由大量"小岛"组成,且每个"小岛"上存在大量纳米合金粒子.充放电测试结果表明,以该合金为锂离子电池负极,其初始放电(嵌锂)和充电(脱锂)容量分别为461和405 mAh·g-1.电化学阻抗谱测试结果显示,Cu6Sn5合金电极在阴极极化过程中分别出现了代表固体电解质界面膜(SEI膜)阻抗、电荷传递阻抗和相变阻抗的圆弧,并详细分析了它们的变化规律. 相似文献