首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   848篇
  免费   25篇
  国内免费   7篇
化学   532篇
晶体学   13篇
力学   41篇
数学   103篇
物理学   191篇
  2022年   23篇
  2021年   26篇
  2020年   18篇
  2019年   21篇
  2018年   18篇
  2017年   14篇
  2016年   25篇
  2015年   18篇
  2014年   44篇
  2013年   59篇
  2012年   34篇
  2011年   49篇
  2010年   48篇
  2009年   44篇
  2008年   47篇
  2007年   47篇
  2006年   38篇
  2005年   25篇
  2004年   20篇
  2003年   17篇
  2002年   24篇
  2001年   10篇
  2000年   12篇
  1999年   12篇
  1998年   9篇
  1997年   9篇
  1996年   11篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1990年   7篇
  1989年   8篇
  1987年   4篇
  1986年   5篇
  1984年   14篇
  1983年   3篇
  1982年   5篇
  1981年   7篇
  1980年   7篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   8篇
  1974年   7篇
  1973年   3篇
  1972年   5篇
  1956年   4篇
  1948年   3篇
排序方式: 共有880条查询结果,搜索用时 0 毫秒
1.
A test for a function to be a solution of an elliptic PDE is given in terms of extensions, as solutions, from the boundaries inside the domains belonging to an isotopic family. It generalizes a result of Ehrenpreis for spheres moved along a straight line.

  相似文献   

2.
There is growing interest in the use of lidar for remote sensing of vegetation owing to the emergence of reliable and rugged lasers and highly sensitive detectors. Lidar remote sensing has a distinct advantage over conventional techniques in vegetation remote sensing due to its capability for three-dimensional characterization of vegetative targets. The Multiwavelength Airborne Polarimetric Lidar (MAPL) system was developed primarily for vegetation remote sensing applications from an airborne platform of up to 1,000 -m altitude. The lidar system has full waveform capture and polarimetric measurement capability at two wavelengths in the near-infrared (1064 nm) and the green (532 nm) spectral regions. This study presents preliminary ground-based lidar reflectance measurements on a variety of deciduous and coniferous trees under fully foliated conditions with a view towards tree species discrimination. Variations in the reflectance characteristics of selected deciduous trees under unfoliated and fully foliated conditions were also investigated. Our study reveals distinct differences in the reflectance characteristics of various trees.  相似文献   
3.
4.
Kinetics as well as the evolution of the agarose gel topology is discussed, and the agarose gelation mechanism is identified. Aqueous high melting (HM) agarose solution (0.5% w/v) is used as the model system. It is found that the gelation process can be clearly divided into three stages: induction stage, gelation stage, and pseudoequilibrium stage. The induction stage of the gelation mechanism is identified using an advanced rheological expansion system (ARES, Rheometric Scientific). When a quench rate as large as 30 deg C/min is applied, gelation seems to occur through a nucleation and growth mechanism with a well-defined induction time (time required for the formation of the critical nuclei which enable further growth). The relationship between the induction time and the driving force which is determined by the final setting temperature follows the 3D nucleation model. A schematic representation of the three stages of the gelation mechanism is given based on turbidity and rheological measurements. Aggregation of agarose chains is promoted in the polymer-rich phase and this effect is evident from the increasing mass/length ratio of the fiber bundles upon gelation. Continuously increasing pore size during gelation may be attributed to the coagulation of the local polymer-rich phase in order to achieve the global minimum of the free energy of the gelling system. The gel pore size determined using turbidity measurements has been verified by electrophoretic mobility measurements.  相似文献   
5.
Trioxalatocobaltates of bivalent metals KM2+[Co(C2O4)3x H2O, with M2+ = Ba, Sr, Ca and Pb, have been prepared, characterized and their thermal behaviour studied. The compounds decompose to yield potassium carbonate, bivalent metal carbonate or oxide and cobalt oxide as final products. The formation of the final products of decomposition is influenced by the surrounding atmosphere. Bivalent metal cobaltites of the types KM2+CoO3 and M2+CoO3—x are not identified among the final products of decomposition. The study brings out the importance of the decomposition mode of the precursor in producing the desired end products.  相似文献   
6.
A proton nmr follow-up provided conclusive evidence for the involvement of two sequential Claisen rearrangements in the thermal rearrangement of 1,4-diaryloxy-2-butynes 1to 11a-methylpterocarpans 3. A detailed study of the rearrangement of 1,4-diaryloxy-2-butynes 1 in polyethyleneglycol-200 (PEG-200), indicated a definite possibility of selective synthesis of either benzofuron (3,2-b )benzofuran 4 or benzofuro(2,3-b)benzofuran 5 by varying the temperature of the reaction alone  相似文献   
7.
Basic salts of Co(II) crystallize in the rhombohedral structure. Two different polytypes, 3R1 and 3R2, with distinct stacking sequences of the metal hydroxide slabs, are possible within the rhombohedral structure. These polytypes are generated by simple translation of successive layers by (2/3, 1/3, z) or (1/3, 2/3, z). The symmetry of the anion and the mode of coordination influences polytype selection. Cobalt hydroxynitrate crystallizes in the structure of the 3R2 polytype while the hydroxytartarate, hydroxychloride and α-cobalt hydroxide crystallize in the structure of the 3R1 polytype. Cobalt hydroxysulfate is turbostratically disordered. The turbostratic disorder is a direct consequence of the mismatch between the crystallographically defined interlayer sites generated within the crystal and the tetrahedral symmetry of the SO42− ions.  相似文献   
8.
9.
A variety of metal complexes of 5,10,15-triphenyl-21-monooxa-corrole 4 have been investigated. This monooxa corrole, where one of the pyrrole ring is replaced by a furan moiety, is synthesized by the alpha-alpha coupling reaction of 16-oxa tripyrrane and dipyrromethane. The single crystal X-ray structure of 4 indicates only small deviation of the inner-core heteroatoms from planarity and this macrocycle arrange themselves into a columnar structure. Insertion of metals further flattens the corrole framework. Specifically, oxacorrole 4 binds to Nil(II), Cu(II), and Co(II) with the participation of all heteroatoms in the coordination. However, Rh(I) ion binds to only one imino and one amino nitrogen of the macrocycle. The bond angles at the metal center in the Ni(II) and Rh(I) complexes reveal square planar geometry completed by two CO molecules for Rh(I). The EPR spectra of the paramagnetic that Cu(II) and Col(II) complexes display significant decreases in the metal hyperfine couplings compared with the corresponding porphyrin complexes. The presence of superhyperfine coupling in the Cu(II) complex suggests delocalization of unpaired electron density into the ligand orbitals. Electrochemical studies reveal easier oxidations and harder reductions relative to the corresponding porphyrin derivatives while, the metallated derivatives did not show their characteristic metal reductions due to the high energy of their LUMO.  相似文献   
10.
We investigated the effect of incorporation of a small aqueous peripheral membrane protein (cyt c) into the three-dimensional periodic nanochannel structures formed by the lipid monoolein (MO) on its rich phase behavior as a function of temperature, pressure, and protein concentration using synchrotron X-ray small-angle diffraction. By simultaneous use of the pressure-jump relaxation technique and time-resolved synchrotron X-ray diffraction, we also studied the kinetics of various lipid mesophase transformations of the system for understanding the mechanistic pathways of their formation influenced by the protein-lipid interactions. Cyt c incorporated into the bicontinuous cubic phase Ia3d of MO has a significant effect on the lipid structure and the pressure stability of the system already at low protein concentrations. Concentrations higher than 0.2 wt % of cyt c led to an increase in interfacial curvature due to interaction of the protein with the lipid headgroups. This promotes the formation of a new, probably partially micellar cubic phase of crystallographic space group P4(3)32. Upon pressurization, the P4(3)32 phase undergoes a phase transition to a cubic Pn3m phase with smaller partial specific volume. Increase in protein concentration increases the pressure stability of the P4(3)32 phase. The formation of this phase from the cubic phase Pn3m is a slow process taking many seconds and having a time lag in the beginning. It seems to occur as a two-state process without ordered intermediate states. At temperatures above 60 degrees C, the P4(3)32 phase is unable to accommodate the unfolded protein and transforms to a bicontinuous cubic Ia3d phase. Time-resolved small-angle X-ray scattering studies show that the L(alpha) --> Ia3d transition in pure MO dispersions under limited hydration conditions occurs within a time interval of 1 s at 35 degrees C preceded by a lag phase of 1.5 s. The Ia3d cubic phase initially forms with a much larger lattice constant due to hydration and experiences an initially lower curvature that relaxes within about 1 s. Interestingly, no other cubic phases are involved as intermediates in the transition, i.e., the gyroid cubic phase is able to form directly from the L(alpha) phase. The mechanism behind the L(alpha) --> Ia3d transition in pure MO dispersions has been discussed within the framework of recent stalk models for membrane fusion. In the presence of cyt c, the L(alpha) --> Ia3d transition is much slower. The rather long relaxation times of the order of seconds are probably due to a kinetic trapping of the system and limitation by the transport and redistribution of water and lipid in the evolving new lipid phases. We also studied the transition from the pure lamellar L(alpha) phase to the Ia3d-P4(3)32 two phase region and observed a rather complex transition behavior with transient lamellar and cubic intermediate states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号