首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   5篇
化学   78篇
晶体学   1篇
力学   3篇
数学   25篇
物理学   32篇
  2024年   2篇
  2023年   4篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   9篇
  2015年   4篇
  2014年   9篇
  2013年   10篇
  2012年   13篇
  2011年   11篇
  2010年   7篇
  2009年   2篇
  2008年   8篇
  2007年   13篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
1.
The title compound was synthesized by reacting the elements in an arc-melting apparatus under purified argon and subsequent annealing at 870 K. Ca3Ni8In4 was investigated using X-ray diffraction on both powders and single crystals: P63mc, a=898.9(1) pm, c=752.2(2) pm, wR2=0.0591, 327 F2 values, and 35 parameters. This structure is an ordered, noncentrosymmetric variant of the BaLi4 type. The nickel and indium atoms build a complex three-dimensional [Ni8In4] polyanion in which the calcium atoms fill distorted hexagonal channels. To a first approximation the formula may be written as (3 Ca2+)6+ [Ni8In4]6−. Within the polyanion the Ni1, Ni3, and Ni4 atoms form one-dimensional cluster units which extend in the c direction while the Ni2 atoms have only indium neighbors in a distorted tetrahedral coordination. The Ni–Ni distances in the cluster range from 241 to 266 pm. The cluster units are surrounded and interconnected by indium atoms. The group– subgroup relation from centrosymmetric BaLi4 to noncentrosymmetric Ca3Ni8In4 is presented. Chemical bonding in Ca3Ni8In4 and the structural relation with Lu3Co7.77Sn4, Ca3Au6.61Ga4.39, and Co2Al5 is briefly discussed.  相似文献   
2.
New auride Ca3Au3In was synthesized from the elements in a sealed tantalum tube in a high‐frequency furnace. Ca3Au3In was investigated by X‐ray powder and single crystal diffraction: ordered Ni4B3 type, Pnma, a = 1664.1(6), b = 457.3(2), c = 895.0(3) pm, wR2 = 0.0488, 1361 F2 values, and 44 variables. The three crystallographically independent boron positions of the Ni4B3 type are occupied by the gold atoms, while the four nickel sites are occupied by calcium and indium in an ordered manner. All gold atoms have trigonal prismatic coordination, i.e. Ca6 prisms for Au1 and Au2 and Ca4In2 prisms for Au3. While the Au3 atoms are isolated, we observe Au1–Au1 and Au2–Au2 zig‐zag chains at Au–Au distances of 292 and 284 pm. These slabs resemble the CrB type structure of CaAu. Consequently Ca3Au3In can be considered as a ternary auride. Together the Au2, Au3 and indium atoms build up a three‐dimensional [Au2In] polyanionic network (281–293 pm Au–In) in which the chains of Au1 centered trigonal prisms are embedded. The crystal chemical similarities with the structures of Ni4B3, CaAuIn, and CaAu are discussed.  相似文献   
3.
The indides Eu2Pd2In and Eu2Pt2In were synthesized from the elements in sealed tantalum tubes in an induction furnace. The samples were characterized by powder X‐ray diffraction. The structures were refined on the basis of single‐crystal X‐ray diffractometer data: HT‐Pr2Co2Al type, C2/c, a = 1035.7(2), b = 592.9(1), c = 823.6(2) pm, β = 104.26(1) °, wR2 = 0.026, 1075 F2 values, 25 variables for Eu2Pd2In and a = 1017.2(2), b = 588.7(1), c = 826.5(1) pm, β = 103.76(1) °, wR2 = 0.062, 706 F2 values, 25 variables for Eu2Pt2In. The indium atoms have four platinum (palladium) neighbors in strongly distorted tetrahedral coordination at Pt–In and Pd–In distances ranging from 273 to 275 pm. These InPd4/2 and InPt4/2 units are condensed via common edges to infinite InPd2 and InPt2 chains, which are surrounded by the europium atoms. The chains form the motif of hexagonal rod packing.  相似文献   
4.
The crystals of the title compound, [Mg(C32H16N8)(H2O)]·2C3H9N, are built up from MgPc(H2O) [Pc is phthalo­cyaninate(2−)] and n‐propyl­amine mol­ecules that inter­act via O—H⋯N hydrogen bonds. The MgPc(H2O) mol­ecule is non‐planar. The central Mg atom is coordinated by the four equatorial isoindole N atoms of the Pc ring system and by the O atom of an axial water mol­ecule. The Mg atom is displaced by 0.509 (1) Å from the N4 plane towards the water O atom. MgPc(H2O)·2(n‐propyl­amine) mol­ecules related by the inversion centre are linked by N—H⋯O hydrogen bonds to form a dimeric aggregate.  相似文献   
5.
3-Hydroxyquinolones undergo excited-state intramolecular proton transfer (ESIPT), resulting in a dual emission highly sensitive to H-bonding perturbations. Here, we report on the strong effect of viscosity on the dual emission of 2-(2-thienyl)-3-hydroxyquinolone in protic solvents. An increase in viscosity significantly decreases the formation of the ESIPT product, thus changing dramatically the ratio of the two emission bands. Time-resolved studies suggest the presence of solvated species characterized by decay times close to the solvent relaxation times in viscous media. The intramolecular H bond in this species is probably disrupted by the solvent, and therefore, its ESIPT requires a reorganization of the solvation shell for restoring this intramolecular H bond. Thus, the ESIPT reaction of this dye and its dual emission depend on solvent relaxation rates and, therefore, on viscosity. The present results suggest a new physical principle for the fluorescence ratiometric measurement of local viscosity.  相似文献   
6.
3-Hydroxyquinolones (3HQs), similarly to their 3-hydroxychromone analogs, undergo excited state intramolecular proton transfer (ESIPT) resulting in dual emission. In the ground state, 2-phenyl-3HQ derivatives are not flat due to a steric hindrance between the 2-phenyl group and the 3-OH group that participates in the ESIPT reaction. To study the effect of this steric hindrance on the ESIPT reaction, a number of 3HQ derivatives have been synthesized and characterized in different organic solvents by steady-state and time-resolved fluorescence techniques. According to our results, 2-phenyl-3HQ derivatives undergo much faster ESIPT (by nearly 1 order of magnitude) than their 2-methyl-3HQ analogs. Moreover, 1-methyl-2-phenyl-3HQ having a strongly twisted 2-phenyl group undergoes a two- to three-fold slower ESIPT compared to 2-phenyl-3HQ. These results suggest that the flatter conformation of 2-phenyl-3HQ, which allows a close proximity of the 2-phenyl and 3-OH groups, favors a fast ESIPT reaction. The absorption and fluorescence spectra of the 3HQ derivatives additionally confirm that the steric rather than the electronic effect of the 2-phenyl group is responsible for the faster ESIPT reaction. Based on the spectroscopic studies and quantum chemical calculations, we suggest that the 2-phenyl group decreases the rotational freedom of its proximal 3-OH group in the more planar conformation of 2-phenyl-3HQ. As a result, the conformations of 3HQ, where the 3-OH group orients to form an intramolecular H-bond with the 4-carbonyl group, are favored over those with a disrupted intramolecular H-bond. Therefore, the 2-phenyl group sterically favors the intramolecular H-bond and thus accelerates the ESIPT reaction. This conclusion provides a new understanding of the ESIPT process in 3-hydroxyquinolones and related systems and suggests new possibilities for the design of ESIPT based molecular sensors and switchers.  相似文献   
7.
Let q be a prime power, ??q be the field of q elements, and k, m be positive integers. A bipartite graph G = Gq(k, m) is defined as follows. The vertex set of G is a union of two copies P and L of two‐dimensional vector spaces over ??q, with two vertices (p1, p2) ∈ P and [ l1, l2] ∈ L being adjacent if and only if p2 + l2 = pl. We prove that graphs Gq(k, m) and Gq(k′, m′) are isomorphic if and only if q = q′ and {gcd (k, q ? 1), gcd (m, q ? 1)} = {gcd (k′, q ? 1),gcd (m′, q ? 1)} as multisets. The proof is based on counting the number of complete bipartite INFgraphs in the graphs. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 322–328, 2005  相似文献   
8.
We solve an analogue of the Barker–Larman problem for convex polygons in the hyperbolic plane.  相似文献   
9.
For a class of ultraparabolic equations of the Kolmogorov type, we prove the theorems on the correct solvability and the integral representation of solutions of the Cauchy problem, whose initial data belong to special weight spaces of functions and generalized Borel measures. On the basis of these theorems, we obtained the full characterization of appropriate classes of solutions of the equations under consideration.  相似文献   
10.
We have measured heat capacity and thermal expansion of rare earth dodecaborides REB12 (RE=Y, Tb-Tm, Lu). YB12 and LuB12 are diamagnetics whereas the other dodecaborides are ordered antiferromagnetically. The amplitude of the heat capacity discontinuity at the Néel temperature and the shape of the heat capacity variation in the critical region for all these antiferromagnetics are characteristics for amplitude-modulated magnetic structures. In the ordered state TbB12 reveals two first-order phase transitions, most likely due to magnetic structure changes. The heat capacity of ErB12 just below the Néel point shows an anomaly of unclear origin. From the Schottky contribution to the heat capacity we have determined crystal field parameters. They are completely different than that is estimated from Point Charge Model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号